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Preface

The 1993 International Workshop on Computational Electronics took place at Leeds in
England. The aim of the workshop is to allow researchers to focus on the computational
aspects of solid-state device modelling. This encompasses new device and carrier transport
models, numerical and computational techniques, computational implementation of transport
theory (including quantum), developments in modelling electronic structures, new techniques
in computer visualization of models. This year an underlying theme associated with compound
semiconductor devices was adopted, but contributions on all aspects of solid-state modelling
for all types of material were invited.

The workshop consists of several sessions, with invited papers, contributed papers and poster
sessions, allowing opportunity for questions and technical interaction. Tutorial sessions are
included at the start of the meeting to allow experts to address developments in computational
numerical techniques.

This International Workshop on Computational Electronics follows the very successful series
of workshops held in previous years in the United States of America. The earlier workshops
were organised by the National Center for Computational Electronics (NCCE) and supported
by the US National Science Foundation. This year we are grateful to the US Office of Naval
Research, the US Army European Research Office and the Department of Electronic and
Electrical Engineering at The University of Leeds for their support.

We are grateful to the members of the Programme Committee for reviewing the contributed
papers and to the Advisory Committee for their helpful comments and suggestions. Over 60
contributed papers were submitted this year. The very high standard of these papers has led
to a unique collection of contributions in this area. We are grateful to the invited speakers for
providing keynote addresses.

Christopher M. Snowden
Michael J. Howes

University of Leeds, August 1993
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Numerical Modelling of Microwave Devices

Eric A B Cole

Department of Applied Mathematical Studies.

University of Leeds,

Leeds LS2 9JT. UK

Abstract

Various numerical routines are discussed and applied to the numerical

simulation of a planar sub-micron gate length GaAs MESFET. The model contains

energy transport and degenerate statistics. A generalisation of the

Scharfetter-Gummel method is given which enables both the electron current
density and energy flux to be easily coded. Degenerate statistics are

rincluded for the case in which the relaxation time is proportional to E

Steady state results are presented - these are arrived at both by iterating

the transient solution and the direct method based on a modified Newton

method.

I Introduction

In this paper we look at the finite difference approach to the modelling of

a two-dimensional MESFET. Other methods - the Finite Element method 11,21,

the Boundary Element method and the Multigrid method [31 can be found

elsewhere. To illustrate the general theory developed in Section IV, we will

consider the simulation of a planar sub-micron gate length GaAs MESFET whose

cross section in the x-y plane is shown in figure 1, with the ends of the

source, gate and drain at x-so, s,, go, g,. do and d,. The electron density

n, electron temperature T and potential # will all be functions of x, y and
time t. The equations are:

(i) the Poisson equation

q
V' N- n)()

C d

where c is the product of the permittivity of the vacuum and the relative

permittivity of the semiconductor. This equation Is to be solved with the

boundary conditions #=Vý on the source, =-V on the drain, =-V +#b on the
gate where 0 b Is the built-in potential, and */82n - 0 at other parts of the
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y
A

subt substrate

active layer

S 0  s1 g0  g1  do d x

source gate drain

Fig. 1. Cross section of the MESFET.

boundary (In this paper, n will represent the unit vector normal to the

surface). The electric field is

E = -V• ; (2)

,.. the current continuity equation (neglecting recombination)

8n . !v.j (3)
9t q ~

where the current density J will have the form

I = a cn(V) + 3CTlVn) + 7cn(VT) (4)

for certain coefficients a, $c and 7 . The boundary conditions taken here

are n-2.5N on the source and drain, n=O on the gate, and On/Sn=O elsewhere;d

(iii) the energy transport equation

aW (W-Wo)
- J.E- V.s (5)at ~~ ~

where C is the (position and time-dependent) average electron energy, W-nC,

-r(C) is the energy-dependent relaxation time, and s is the energy flux

s = cEW(VO) + 1ET VW) + 7 W(VT) (6)

for certain coefficients 4E' 1£ and TE. The forms of all the coefficients

will be discussed more fully in section V when particular statistics are

introduced.

Having obtained a set of modelling equations, they should always be

scaled to ensure a good numerical range for the variables [1,41.

12

L



1I Finite Differences

We will deal only with the special case of a non-uniform rectangular mesh.

More general techniques including, for example, mesh refinement [1,5J and box

generation [6) are described elsewhere. Consider the two-dimensional

rectangular mesh shown in figure 2. Mesh points will be labelled 0,1,2,..M

and 0,1,2,..N in the x and y directions respectively. The general mesh point

will have coordinate (xI,y ). The variable mesh spacings will be hI=x1+1 -xI

(i-O,..M-1) and k1-yj÷1-yj (j=l..N-l). The case of uniform mesh is given by

h I=h=const. and k =k=const. The value f(xM,y ) of any function f will be

denoted shortly by fJ . while its value at the half-points (x I+h/2,yj),

(x ,y +k /2) and (x +h /2,yj+k /2) will be denoted by f÷1 / 2 ,J' fJ+1/2 and

f respectively.
.1÷/2,J+1/2

k
y

x x x
| 1+1

Fig. 2. The mesh.

Standard formulae exist for first and second order derivatives [71. The

important ones for this simulation are listed below (resorting to the

one-dimensional case temporarily to ease the notation). The half-point

formula for the first derivative of f is given by

f -f
f = 1+1/2 f1-1/2 (7)

(hI + h 11)/2

where the next term -(h -h it)f I/4 has been neglected. This is useful

for evaluating divergences. The second order derivative at xI can be written

f,11 - f, (f -f)/h - (f-f )/hf • =€ 141/2 1- 1/2 111 11- I-

(hI + h1 1 )/2 (hI + h1 1 )/2

and the neglected term here is (h -h W)f1"/3.

We often need an expression for the normal derivative at a boundary, in

13
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I

which case it is very often zero. False nodes can be introduced outside the

boundary but this increases storage requirements. Alternatively, this

derivative may be expressed at x-O In terms of values at internal nodes by

h (h +2h )f - (h +h 2)f + h02 f21'= 00 01 1 2(8)

h hh (h+h)

with a similar expression at x=x .

Returning to the case of functions of two variables, the Poisson equation

V 2 -g can be discretised in the form

01+,'j-0J i - 0iJ 1 -1lj *1,J+1"01 j -i.j-01,j-1

h h k k
t 1-1 __ _ _ -1 g, =0 . (9)

(h +h- )/2 (k +k )/2

In the case of uniform mesh this reduces to the standard 5-point formula
2 2¢ 2h

p20-1,J + l lJ +0 pJ-1 + 0 1J+1 - 2(l+p2)V = p2h2 g (10)

where pmk/h. This equation has an error of order h4 , while the more accurate

9-point formula.with error of order h is [81

(lOp2 -2)(0s-I'j'4 1 +I J ) + (I0-2p2) 1 )( -1 +0, J I

+ (lI+p 2 )(0i -IJ-*1V++ s1, J -1 ' + +1÷ J+1-201 ,) (11)

p2h2 (g g -1, J+91 +I,J~glJ- 1g gJ+ 8gli

III Solution of Simultaneous Equations

The discretisation of the differential equations of the model generally gives

rise to the problem of solving a set of M+1 analytical equations of the form

fI(X 0 = 0 (i=O,l....M), (12)

where the Md+l values X will represent typical physical quantities at each

point i. If there are v physical quantities described at each point, then the

top index M is replaced by v(M+j)-l. The method of solution will depend on

whether all the equations are linear or at least one equation is nonlinear.

14
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A. Linear Equations

When equations (12) are linear they take the form

AX = b (13)

where A is an (M+I)x(M+I) matrix and b is an (M+I) component vector, both

with elements which may depend on X. These can be solved by direct methods or

by indirect methods using iteration.

(a) Direct Methods. Very often the matrix is tridiagonal and a simple

solution is available. Suppose that the equations have the form

aX +X *IXl + 6 (i-O,l,....M)
a I - 3 I + 1 X1+1 '

and the terms involving ao0 and IM do not appear. The standard method of

eliminating down from the first equation and solving the resulting final two

equations for X and X gives the solution

= (_ (M)- a

X (13 8, X(14)X = { )-I 6'-7 iX.I ( i=M-1, . ...0) 1

where the 1' and 6' are generated by

I- I
0 0 0 0

13 13 a (i, -1 1-

6' 6 aA' )15I J (-1.... -1).

Efficient coding of this routine is available (9,101. We can usually get

away without pivoting in this case because the simulation will probably not

cause problems with the sizes of the elements of the tridiagonal system. In

one-dimensional simulations which involve Y physical variables at each node

(for example, v-3 when the variables are n, p and #), the equations at each

node can be grouped so that equations (14) still hold. In that case, however,

the X, 6 and 6' are v-component vectors and the quantities a, ' i, and

1, are vxu matrices. The multiplications in equations (14) are in the correct

order for matrix multiplication [111.

When A is not simply tridiagonal, LU decomposition with partial pivoting

15

IF 9 1P 4 P•



and scaling to control the growth of rounding errors may be used [10,12.131.

Rounding errors in direct methods can often be eliminated by solving the

equation Ae-b-AX for the correction e to the computed solution X.

(b) Relaxation Methods. Consider the iterative process

Xk* - xk+C (15)

where the iteration matrix 8 is an (M+I)x(M+I) matrix with constant

coefficients. If the solution converges to X then equation (15) is equivalent

to the equation (I-B)X-c. Convergence may be slow If the spectral radius of

B is close to unity, so instead take a modified iteration process

~Xk+ . Xk + wfc-(l-B)X'i = +'X" + wc (16)

V e-I - ) - - -

and adjust the value of the parameter w so that the spectral radius of B' is

as small as possible. This is the basis of the relaxation method.

In our original problem given by equation (13). we may write A=Lo+D+U°

where D is diagonal and L and U are lower and upper triangular with zeros

on the diagonals. This decomposition suggests the Jacobi iteration

," b- -(L.oUo)Xk

with iteration matrix B=-D-(L +U), and the Gauss-Seidel iteration

Lo+D)XI+l = -UXXk + b

with iteration matrix B=-(L +D)-1Uo. It can be shown [9,14,151 that the

scheme (16) is convergent only for 0<w<2. If O<w(l then we have Successive

Under- Relaxation (SUR) while if 1(w<2 we have Successive Over-Relaxation

(SOR). Further, the Jacobi spectral radius for equation (10) is

2 X W

p cos 0 + cos 0
PJ = 2

3 ~ l+p 2

2
with optimal choice w =

1 + (U-pJ12

This is not the exact value for the equation (11) but it very often works

well enough. See also 1161. The value of w may also be changed as the

Iteration progresses 1171, for example, Chebyshev Acceleration.

16
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B. Non-linear Equations

The standard method here is the Newton-Raphson method. If X and X-X +6X are--c -- --C

the computed and true solution, expansion of (12) to first order gives

Oft.Jax - -f(X) where J X--Ic

- - ~C Iiiax

is the JAcoblan. This is a set of linear equations which can be solved (among

other methods) using the iteration scheme

J'61 - o6), xe1 - X +

where a is taken such that O<asl to avoid overshoot. It is usually necessary

to take a small in the early stages of the iteration and then to steadily

increase it as the iteration progresses.

An alternative Newton method has been found to make iterations go more

smoothly. Instead of solving for 3Xk we solve directly for Xk+:

JX.k~l = J(Xk + aXik) . jX _ afk. (17)

The advantages here are that we can usually take larger values of a and that

fewer initial guesses need to be made. When J *0 (1=0,..M) then (17) becomesIt

k÷1 = J-1 (-T-f* + jX)I - E lj i +
J0*IJ )

with corresponding iteration process

x k+1 (1-w)X k+1 + WJk-1l((-af + JXk)w J E " JXkjk1) (18)

where faf(Xk) and JEJ(X"). If X represents a natural grouping of v quantities
at each point (that is, X is a v-componc'ft vector) then equation (18) still

holds with J being a vxv nonsingular matrix, and w as a vxv diagonal matrix
with separate relaxation factors down the diagonal.

Evaluation of the Jacobian can be the most time-consuming part of the

operation. It is possible to differentiate the functions f numerically using

ef I f (Xo •.. •, X+AX .... 'X M)-f (Xo, .. Xl,.X)

R i AXJ I

where the AX are suitable increments. If the AX are too small then roundoffJ J

17
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errors can swamp the calculation, while convergence will be linear if they

are too large (181. Methods could be used in which, say, standard functions

are differentiated explicitly while, for example, mobility curves fed in from

other simulations could be differentiated numerically. Also using Broyden's

rank one correction it is not necessary to evaluate J at each iteration [19].

IV Discretising the Current Continuity and Energy Equations

An explicit time discretisation of the current continuity equation will only

work if the timestep At is excessively small [201, while a fully implicit

Crank-Nicholson scheme [12] is difficult to solve. The linearised

semi-implicit scheme [211 is more satisfactory unless At is taken too large.

This limitation can be avoided if we use, in the case of constant T , the
0

Scharfetter-Gummel method in which we take an exponential variation in the

carrier deviations between nodes 122,23].

The following is a generalisation of the Scharfetter-Gummel method when

T is not constant throughout the device. Equations (4) and (6) can be0

written in general form

V = a(VO)e + OT (vo) + ye(VT) (19)

0 0

where (Vaj, Oun) for the current density and (Vns, GwWj for the energy flux.

For numerical purposes only we now make the assumptions that, in the interval

(i,j)-*(i+l,j), the quantities , VT, 13,a/1 and 7/13 are constants. The x-

component of equation (19) becomes

88 r1 8T +K i a* V
8X + ITo 8T-x + T1~

which has integrating factor

exp TZ ' 8T + a I =0dx T 120a=TrxeT~~ (20)

where rm!.+ x- x x and quantities 7/1 etc are evaluated at

(i+1/2,J). The resulting equation is

8- r r-1 (V-

which can be integrated between x=xI and x= 1+1 and re-arranged to give

18

U W - _ - _ U ,



( V ) ÷ I 2 • e p L P ÷2. J. J J ) T t , J0 I 1
CV -' i/.[C71  (- ( i I+1 1i~)T. j ,j 1jTI-j) I1*j

-C,, 7/• I÷ 1J-01t, J 1 j T + ,J)J"

with a similar expression for (V y) Here, C is the function defined

by

Ca(x,y,z) a p(y,z)B p(yx z)*I (y'z) (22)

where p(y,z) m (z-y) and B(t) a t is the Bernoulli function.
I n~z-/y) e t -I

One important property of this C-function, namely

qrnft C(x,ToT) - T B(x/T 0
0

is useful for applying to models in which the electron temperature is a

constant To, and the original Scharfetter-Gummel expression is then obtained.

It is necessary to avoid overflows and underflows when evaluating the

C-functions. The usual method [1) is to make a piecewise machine-dependent

approximation for B(t). The derivative of the Bernoulli function can be

approximated by

(t-2)/4 for t 2 St s t

B'~ ~ t CtI-B__ (-t-t) otherwise.

V Evaluation of the Coefficients

The Fermi integral F r () is defined as

* Uo

Fr 17) a r(r+l)-l!yr l + eY-X)-ldy where r(r+l) a fyre-Ydy

o 0

This function has been extensively approximated and tabulated (241. Write k.
as Boltzmann's constant, h. as Planck's constant, Pi as the mobility, m. as

the effective electron mass, vr(Eu -Ec )/CkT), and take the energy dependence

of the relaxation time as 're(E-E )r. The first few moments of the Boltzmann
C

transport equation then give (25,261
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n AT 3/rF (ii) where A a 2(2wkm.)V /hp ,

W - 3-kT nF (70/ 0
23. 3/2 1/

J - un(-qV* + k T Vi7) + I (VT)/T"3.B 2 •

qs W - I2(-qVO + ksTV1) - 13(VT )/T

where
Iz•pnlr+b)kBIeFr÷3//Fr.,/2

12 1 (n7(r÷-)kT F /F

13 2 2 B a r+5/2 r+3/2

After extensive manipulation and using the constant effective mass

approximation, it is found that J and s have the forms (4) and (6) where

ac =k-qFJ

P3c = knpFI/2/F_I/n

"2c = k ((r+!)F 3•/Fr/2 -F

2 5

-l(r+-)F F /(F F )
E " 2 r3/2 I r /2 3/2

13 E == -3 kBL~(r+i)F r+3/2ý(qFr P/2)

S= 2k~(r+!) (-Fr 3 /2/FW+ _(r+7)Fr ,F27 F/ F ) /q

and FEF,(iq) throughout.

At certain stages of the numerical implementation it is necessary to find

v and T at each point given the values of n and W. From the above, it may be

shown that

F l1/2 71 3/1)3 54hP 6 (wm )-3 nS/W 3  (23)

and this may be Inverted to give 71 and hence T from

tý - -2F OW,, -)].
3 1V2 3/

Conversely, to find i and W given n and T, il may be calculated at each point

by inverting the equation
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F .A-q) - n/(AT3/) (24)

and calculating W from

Both these inversions must be done at each grid point. Once the functions
F W and F3W2 have been programmed, inversion is straightforward since the

left hand sides of equations (23) and (24) are strictly increasing functions

of -1.

VI Implementation for the MESFET

We now apply the preceeding results to the simulation of the MESFET model

outlined in section I. Referring to figure 1, the dimensions taken were

So0.0pn, s 1-O.2jm, g0 =O. 6pm, g1 =I.=lpm, do=1.61Lm and d,=l.Bpm. The total

thickness including substrate was 0.4Spm. An abrupt junction at y=0.35pm was

taken with

N 10 3 m-3 for Opm s y s 0.35nim
Nd 1 019 m-3 0.3.3Spm < y s 0.45 im.

Monte Carlo simulations and experimental data on the steady state transport

characteristics provide t i.ves of C and T in terms of the static electric

field E which Is used as an intermediate parameter. This enables T to be

found in terms of C. The mobility is given by

30p 8.Sxl I0E3 ]______
300po I + S 0.8P UoT 0 p 0(l-5.3xO I-4To)E0  where o + (N[ I+( WEo0 ) 4 d

and E-4xl40Vm 1'. All boundary conditions 8/On-0 were implemented using

equation (8) and Its equivalents with all derivatives zero. The

quantities J and s were coded at the half points using appropriate values in

expression (21). Three solutions were performed: the transient solution, the

steady state reached by Iterating the transient solution, and the direct

solution of the steady state.

(a) The transient solution. A timestep At.lO-14s was used. The Poisson

equation (11) was used to extract an expression A W for # 1J in terms of the

other quantities, and was solved by iterating the equation
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04.j (1-w )P6,j * w A W

The current continuity and energy equations (3) and (5) were similarly solved

by coding the C functions with the appropriate quantities ac .... IE" It was

found that the separate relaxation factors w -1.4, wn -0.8 and WT-0.5 gave

the fastest iteration. At each timestep, the three equations were iterated

separately inside an overall iteration. A mixture of convergence tests was

used. In the case of the 0 iteration, we required convergence at each point,

that is, we required that I j-0ilj I had to be less than some prescribed

value at every point, where 01 was the value at the previous iteration. The

same test was applied to the electron temperature T. In the case of the n

we applied a weaker test by requiring that only the average relative

difference In -nl, I/n be smaller than some prescribed value. It was

found that this average condition gave a smoother time plot of the total

current

0.45

Jtot J (J + cSEX/8t)dy

0

(b) Iteration to the steady state. The method of (a) was used but with no

iteration of the equations at each timestep. A total of 2000 timesteps was

used, giving a device time of 20ps. Results for 0, n and T are shown in

figure 3 (viewed from corner A in figure 1) for the case r=-l.

(c) Direct method. A natural grouping Xj(lb, nhi,, T 01)T exists at

each gridpoint (ij). Put all 8/8t terms zero in equations (1), (3) and (5)

and write the equations generally as G,=0, G =0 and G3=0. The Newton method

applied at each point gives

AfiX + 6X + C8X + D8X + E8X -- G

where A MIG /8Gi1 1j_ etc are 3x3 matrices. Writing n, mX~,+1 iXJ, the

modified Newton method (18) becomes

kt W ,.|,Zj' + C- ij I+ J ~ Il ~IJI - '+

-A k+l -- Bk+l - D k+l -EX k+I

1- j 1+1 k.1 -1 I'+1

where w is the diagonal matrix with nonzero elements wPsi, wn and wT. This

routine is fragile in the early stages, and for the first few Newton

Iterations it Is necessary to take a very small (typically 0.01), ntIj to be

kept positive and T to be not less than To.
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(a)

00.0

(b)

1010

Fig.3. Steady-state results for (a) potential ip, (b) electron density n,
and (c) electron temperature T
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The Classical and Quantum Hydrodynamic Models

Carl L. Gardner'
Department of Computer Science and Department of Mathematics
Duke University
Durham, NC 27706

Abstract

The classical and quantum hydrodynamic equations are presented in a unified formula-
tion and the 3D transport equations are mathematically classified. The ID steady-state
classical and quantum equations are discretized in conservation form using an upwind
method. A classical hydrodynamic simulation of a steady-state electron shock wave in a
one micron Si semiconductor device at 77 K is presented and compared with a DAMO-
CLES simulation of the Boltzmann equation. Quantum hydrodynamic simulations of a
resonant tunneling diode are presented which show charge buildup in the quantum well
and negative differential resistance in the current-voltage curve.

I. Introduction

Electron propagation in a semiconductor crystal is well modeled down to submicron scales
by the classical hydrodynamic model. The classical hydrodynamic equations can be ex-
tended to include quantum effects by incorporating the first quantum corrections. These
O(h') terms allow particle tunneling through potential barriers and particle buildup in
potential wells.

The aim of this paper is to give a unified presentation of the classical and quantum
hydrodynamic conservation laws and of their mathematical classification and numerical
discretization. I will also present a classical hydrodynamic (CHD) simulation of an elec-
tron shock wave in a one micron Si n+ - n- n+ device at 77 K and quantum hydrodynamic
(QHD) simulations of resonant tunneling in an GaAs/Al--Gal-,.As diode at 77 K.

The classical and quantum hydrodynamic conservation laws have the same form:

On 0
5 + -(nu,) = 0 (1)

apa + Ox,(Ucj T- (2)

ow 69 ov (W - 2nTo)
+W 8 - uiPi + q,) = -nu. -( - 2 (3)

3Z Oxi r

'Research supported in pat by the U.S. Army Research Office under grant DAAL03-91-G-0146 and
by the National Science Foundation under grant NSF-DMS-92-04189.
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where n is the electron density, u is the velocity, p is the momentum density, Pi is
the stress tensor, V = -eo is the potential energy, 0 is the electric potential, e > 0 is
the electronic charge, W is the energy density, q is the heat flux, and To is the lattice
temperature in energy units (kE is set equal to 1). Indices i, j equal 1, 2, 3, and repeated
indices are summed over. Eq. (1) expresses conservation of electron number, Eq. (2)
expresses conservation of momentum, and Eq. (3) expresses conservation of energy. The
collision terms in Eqs. (2) and (3) are modeled here by the standard relaxation time
approximation, with momentum and energy relaxation times rp and -r.

The classical and quantum hydrodynamic equations can be derived from a moment
expansion of the Wigner-Boltzmann equation. The classical equations are obtained by
setting h = 0. To close the moment expansion at three moments, we have to define e.g.
p, Pij, W, and q in terms of n, u, and T, where T is the electron temperature.

In the simplest approximation, the heat flux is specified by the Fourier law q = -KVT.
For the O(h2) "momentum-shifted" thermal equilibrium Wigner distribution function, the
momentum density p = mnu, where m is the effective electron mass, the stress tensor is
given by

= h2n 82

Pij = -nTij + 12n O2i log(n) + O(hi") (4)

and the energy density by

3 1 2 n2
W = 3nT + 1-mnu - 2--v2 n2 log(n) + O(h4 ). (5)

2 2 24-m

I derived the full three-dimensional quantum hydrodynamic model for the first time by a
moment expansion of the Wigner-Boltzmann equation in Ref. [1]. The quantum correction
to the energy density was first derived by Wigner 121. The quantum correction to the stress
tensor was proposed by Ancona and Tiersten [3] on general thermodynamical grounds and
derived by Ancona and Iafrate [4] in the Wigner formalism. In the one-dimensional case,
the 3D QHD equations reduce to the QHD model of Grubin and Kreskovsky [5].

The actual expansion parameter in the QHD equations is h2/8mTl 2, where I is a

characteristic length scale of the problem [4]. For the resonant tunneling diode simulations
in section V with T •z To = 77 K and I = 100 A, the expansion parameter ;: 0.23.

The transport equations (1)-(3) are coupled to Poisson's equation for the electric
potential energy

V. (EVV) - e2(ND - NA - n) (6)

where e is the dielectric constant, ND is the density of donors, and NA is the density of
acceptors.

II. Classification of the Hydrodynamic Equations

To classify the hydrodynamic equations, rewrite the hydrodynamic equations (1)-(3) and
(6) (with rp, r, -- oo) in terms of n, u, and T:

N + a(n u,) =0 (7)
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I

8t, O, 18A 8( 8 n"+- =0 (8)
.-O + J,-- + -- L(nT) - (n " logn 1  0 + V0,zi mn j 12Mn oi Oziaxj n 'zj

OT -T A2ts 28. (9)8+ , 3 5 3+ 8:- I a 8, 36mn a8, (9)

- V(eVV) + e2 (ND - NA - n) = 0. (10)

Then: linearize the PDEs (7)-(10) with respect to a Fourier mode perturbation, and
freeze coefficients. Set

n 1 6n
UIl = + e-Ot+ik~x 6ui (11)

v v 6v

where [W, U, T, V] is a solution of the hydrodynamic equations.
Next write the linearized hydrodynamic equations in terms of the symbol S of the

linearized PDE system (7)-(10) as

- diag{o, a, a, o,, a,, 0} [6n, 6u,, 6T, 6V] + S [6n, 6ui, 6T, V]= 0 (12)

As IkI o0, S - diag{o, a6,i, a, 0) has the form

2 *--

ik. u - a ikn 0 0
ikjL + ik k2 12 (ik" u- o')61j in m, (1ij- 12,n-n M/ M (13)

• ik, V2 . ikT - ikik2 ik* u + 2ka 0
0 0 0 k j2

where i labels columns in the velocity perturbation 6ui and j labels rows in the velocity
equation (8). I have dropped the bar over the solution [n, u,, T, V], and have separately
kept the leading terms in k for the limits h -# 0 and K --t 0.

The mathematical type of the PDE system is determined by the asymptotic eigenvalues
a of the symbol as IkI -- oo. We need only consider the upper 5 x 5 block Ss of the
symbol, since the coupling of the transport equations (7)-(9) to Poisson's equation (10)
only introduces the elliptic Poisson mode, and does not affect the modes of the transport
equations.

There are three physically interesting cases to consider:

(1) A = 0, r = 0 (electrogasdynamics). The eigenvalues of the symbol S3 and correspond-
ing modes are

i(k. u ± kc) hyperbolic
ik. u hyperbolic, multiplicity 3

where c = V-/5i3m. There are five nonlinear waves in classical electrogasdynamics cor-
responding to the five hyperbolic modes: two shock waves and three contact waves. Two
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contact waves can be labeled by a jump in the tangential velocity ut across the wave, and
one contact wave by a jump in the temperature T.

(2) A = 0, K > 0 (hydrodynamic model or electrogasdynamics with heat conduction). The

eigenvalues of the symbol Ss and corresponding modes are

i(k u ± kc) hyperbolic
ik - u hyperbolic, multiplicity 2 (15)
2 k 2c/n + ik. u parabolic

where c = VTI-i. With heat conduction, there are four nonlinear waves [61 in the CHD
model corresponding to the four hyperbolic modes: two shock waves and two contact
waves. The two contact waves can be labeled by a jump in the tangential velocity ut
across the wave. The contact wave corresponding to a discontinuity in T has disappeared
due to the parabolic heat conduction term V- (#cVT) in Eq. (3).

(3) A # 0, K > 0 (quantum hydrodynamic model). The eigenvalues of the symbol Ss and
corresponding modes are

±ik 2 A Schr6dinger

ik. u hyperbolic, multiplicity 2 (16)

Ik2 x/n parabolic

There are two contact discontinuities (in ut) in the QHD model corresponding to the two
hyperbolic modes. Note that two of the hyperbolic modes (which allow shock discontinu-
ities to form) in the classical hydrodynamic model have become Schr&dinger modes when
the quantum corrections are included.

Well-posed boundary conditions for the 2D (and by extension 3D) classical hydrody-
namic model are formulated in Ref. [71, assuming subsonic flow at the inflow and outflow
boundaries. Here I will simply note that in one dimension, the CHD model (with heat
conduction) has two hyperbolic modes, one parabolic mode, and one elliptic mode, and
the QHD model (with heat conduction) has two Schr6dinger modes, one parabolic mode,
and one elliptic mode. Thus six boundary conditions are necessary for the CHD model and
eight boundary conditions for the QHD model. Well-posed boundary conditions for the
1D CHD equations are n = ND, and T = To (or OT/8z = 0) at zi, and zx.,, with a bias
AV across the device: V(z.in) = Tlog(n/n,) and V(xn..) = Tlog(n/n,) + eAV, where
ni is the intrinsic electron concentration. For the ID QHD equations, I add On/Ox = 0
at z,,,m and z,..

MI. The Second Upwind Method

I will discretize the 1D steady-state hydrodynamic equations using an upwind method
adapted from computational fluid dynamics. Since the upwind method requires velocity
values u- u, u, U , UN-1, UN+J at the midpoints of the elements Ii (i = 1, -- , N)
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connecting grid points i -1 ,,.nd i, I will use a staggered grid for u. (I impose a computa-
tional Neumann boundary condition du/dz = 0 at i = 0 and i = N to determine u_j and

UN+I.) The variables n, T, and V are defined at the grid points i = 0, 1, - , N- 1, N.
The boundary conditions specify n, T, and V (and dn/dz for the QHD model) at i = 0
and i N.

In one dimension, the steady-state CHD and QHD models consist of the three nonlinear
conservation laws for electron number, momentum, and energy, plus Poisson's equation:

fu d u(7 + h. 0)

dx U=T] + ST
Iv0 hv av

where (set A = 0 for the CHD model)

gn = n (18)

9, = mnu (19)

gT 5 nT+ mnU h2" n- log(n) + nV (20)
2 2 8m dx2

h. d(T 2nd og(n)I + (21)
h dz ( T) z 12m dX2 (j- (21)

h = -T- . (22)

hv " e -d2V (23)

S = mnu (24)

'3 1 2 ~d 3)\

ST = nT + 1mnu 2  _ log(n ) - !nTo/r. (25)

Sv = e2(ND - NA -- n). (26)

Equations f. = 0, fT = 0, and fv = 0 are enforced at the interior grid points
i = 1, .-- , N - 1, while equation f, = 0 is enforced at the midpoints of the elements
Ii, i=1, ... N.

In the sec/-nd upwind method, the advection terms d(ug)/dz in Eq. (17) are discretized
using secone up-ivind differences2

d
-j(Ug ,•, (U;+g'a - Ujg.9L)/AX (27)

'TJhe u€od upwind method i. a conservative extension of the original fihst-order upwind method.

29

1 i Un i ...



wh~er

{ u 9L+ (ui- > )(LR A +1 (i~< 0) 'i 9L-- < 0) (

and second-order central differences are used for h., AT, hv, and ST.
I use Newton's method to linearize the discretized version of Eq. (17):

r 6n 1 r n A
6J u ] [ u]+ [ :u (29)

" b 6T =- T "T + t
6V fVV V 6iV

where J is the Jacobian and t is a damping factor between 0 and 1, chosen to insure that
the norm of the residual f decreases monotonically.

IV. CHD Simulation of the Electron Shock Wave

The nonlinear hyperbolic modes of the CHD model allow shock waves to develop. A
steady-state electron shock wave in a semiconductor device was first simulated in Ref. [8J.
The shock simulation has been confirmed by a Monte Carlo simulation of Laux of the
Boltzmann equation using the DAMOCLES [9] program. The semiconductor device is an
n+ - n - n+ Si diode at 77 K with 0.1 micron source and drain, with n+ doping density
ND = 1018 cm-', and a 1.0 micron channel, with n doping density ND = 101 cm-3.

For the momentum and energy relaxation times in the hydrodynamic model, I use
modified Baccarani-Wordemann models:

=P T (30)

r= (1 +TLm) (31)

where the low-energy momentum relaxation time rpo is set equal to 1.67 picoseconds from
the DAMOCLES data for 0-00995 eV electrons in homogeneous Si and v, = v.(To) is the
saturation velocity. For Si at 77 K, m = 0.24 m. and v. = 1.2 x 10' cm/s.

The hydrodynamic and Boltzmann saimulations agree remarkedly well [10] when the
amount of heat conduction in the hydrodynamic model is adjusted. The best fit for the
thermal conductivity x in the Wiedemann-Franz law for heat conduction

q = -OCVT, x = roTrponTo/m, (32)

is given by Kc = 0.05.
Figs. I and 2 compare the hydrodynamic and DAMOCLES simulations of the 77 K

electron shock wave in Si at a bias AV = 1 volt. DAMOCLES calculates a current of
4500 amps/cm2 , very close to the hydrodynamic value of 4460 amps/cm2 . The velocity
plot Fig. 1 most clearly shows the shock profile, which is spread out slightly due to the
parabolic heat conduction term in the CHD model. The flow is supersonic at the velocity
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peak just inside the channel, and subsonic at the end of the "velocity overshoot" wave
where the velocity makes a "bend" to a constant value in the channel.

The DAMOCLES velocity exhibits a Mach 2.1 shock profile based on both internal
evidence3 and comparison with the hydrodynamic simulation.

The type of velocity overshoot illustrated in Fig. 1 is always associated with a shock
wave for the + - n - n+ diode. As the electrons enter the channel, the electron velocity
increases rapidly to a peak value greater than the saturation velocity v.. At the same time,
the electron temperature falls slightly as the electrons overcome the small potential barrier
at the source/channel junction. Thus the electron Mach number M near the velocity peak
is greater than v./c > v,/co, where c = T/m is the soundspeed at temperature T and
co is the soundspeed at the ambient temperature To. For Si at 77 K, v. = 1.2 x 10i
cm/s, co = 7.0 x 106 cm/s, and M > 1.7. On the other hand, the electron flow near the
channel/drain is subsonic since v v vo, while T > To, making c> v..

1.6

1.4

1.2

.- 4

0U0.8

)>0.6

0.4

0.2
o0 0 0.2 0.4 0.'6 0.81

x in micrometers

Figure 1: Hydrodynamic and Monte Carlo electron velocity in 10' cm/s for AV = 1 volt.

The jagged curve is the DAMOCLES result. The channel is between z = 0 and z = 1
micron.

The transition from supersonic flow to subsonic flow in general necessitates a shock
wave in gas dynamics4-that is, a wave over which density, velocity, and (if heat conduc-
tion equals zero) temperature change very rapidly. The n+ drain in the source-channel-

SThe electron temperature T f 77 K at the shock wave. Using the effective electron mass approxi-
mation, the electron Mach number M = v/c = v/VT_,/ P 2.1.

4See Courant and Friedrichs [11], pp. 380-387.
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Figure 2: Hydrodynamic and Monte Carlo electron average energy in eV for AV = 1 volt.
The jagged curve is the DAMOCLES result.

drain structure of the diode provides the mechanism that forces a supersonic flow in the
channel back down to subsonic flow.

The excellent agreement between the hydrodynamic and DAMOCLES results is re-
markable in that the hydrodynamic model is orders of magnitude faster than Monte Carlo
simulation of the Boltzmann equation. The hydrodynamic model also provides a mathe-
matical framework in which to understand the velocity overshoot wave in the n+ - n - n+
diode.

V. QHD Simulation of the Resonant Tunneling Diode

The behavior of quantum devices that depend on particle tunneling through potential
barriers and/or charge buildup in potential wells can be efficiently simulated using the
QHD model. Here I will present simulations of a GaAs resonant tunneling diode with
double AIGa1 _,As barriers, with barrier height B = 0.209 eV. The diode consists of an
n+ source (at the left) and an n+ drain (at the right) with the doping density ND = 10"'

cm- 3 , and an n channel with ND = 5 X 1015 cm-3 (see Fig. 3). The channel is 250 A
long, the barriers are 50 A wide, and the quantum well between the barriers is 50 A wide.
To enhance resonant tunneling, the device has 50 A spacers between the barriers and the
contacts.

The barrier height B is incorporated into the QHD transport equations (1)-(3) by
replacing V --# V + B. (Poisson's equation is not changed.)
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Figure 3: Doping/10 8' cm- 3 .
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Figure 4: Current density in kiloamps/cm 2 vs. voltage for the resonant tunneling diode
at 77 K. rco = 0.2 (black), 0.4 (dark gray), and 0.6 (gray). The dots represent computed
solution points.
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For lower valley electrons in GaAs at 77 K, the low-energy momentum relaxation
time Tro in Eqs. (30) and (31) is set equal to 0.9 picoseconds, the effective electron mass
m = 0.063 m., and the saturation velocity (in Eq. (31)) v. f 2 x 107 cm/s. The dielectric
constant e = 12.9 for GaAs.

Current-voltage curves for the resonant tunneling diode at 77 K are plotted in Fig. 4
for three different values of ,o0 in the expression for thermal conductivity (32). These are
the first simulations (11 of the full QHD equations to show NDR in the resonant tunneling
diode.

The peak of the current-voltage curve occurs as the electrons tunneling through the
first barrier come into resonance with the the ground state of the quantum well. Note
the presence of a "shoulder" in the current-voltage curve around AV = 0.25 volts. The
shoulder signals the location of the first virtual state of the quantum well. The location of
the valley and shoulder can be qualitatively understood from the energy levels of a square
well. For a 50 A wide 0.209 eV high GaAs finite square well, there is just one bound state
energy level at 0.079 eV. The energy of the first virtual state of the well is 0.24 eV.

The main effect of larger values of rc0 is to shift the peak of the current-voltage curve
to the right. With lower values of KO, the electrons have a higher average energy as they
impinge upon the first barrier, and therefore resonate with the well at a lower applied
voltage.

A physically relevant value of s 0 is approximately 0.4 for this device. The peak to valley
current ratio of 1.95 agrees quantitatively with experimental ratios for similar devices.

Fig. 5 shows the dramatic charge enhancement in the quantum well typical of the
resonant tunneling diode for applied voltages of AV = 0.097 (peak), 0.191 (valley), and
0.22 volts (just before the shoulder) (with 0o = 0.4). The electron density at the center
of the quantum well increases as AV increases, and is more than two orders of magnitude
larger than the background doping density. Note the depletion of electrons around the
channel-drain junction.

As illustrated in Fig. 6, the electrons spend the longest time in the quantum well
for voltages near AV,,.. The "dwell" time spent by electrons in the well increases
monotonically up to voltages near , and then decreases rapidly. The macroscopic
QHD dwell time differs qualitatively from dwell times based on microscopic quantum
calculations, which predict that the dwell time is maximum at resonance.

Since the QHD equations have the same form as the classical fluid dynamical equa-
tions, well-understood classical boundary conditions can be applied in simulating quantum
devices. Moreover, the QHD equations are expressed in terms of the fluid dynamical quan-
tities density, velocity, and temperature. These classical fluid dynamical concepts enable
us to interpret electron behavior in quantum devices in a physically intuitive way. We
can define the time spent by an electron in the quantum well or the electron temperature
throughout the device in a precise manner. In turn, the intuitive understanding developed
through the QHD model sheds light on more fully quantum mechanical descriptions of
electron behavior in quantum devices.
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IWchnology Computer-Aided Design
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Abstract
Computer simulation in an indle tool for the design of new VLSI devices Be-
sides the progress in physical models and computational techniques which has dominated
technology computer aided des4ig (TCAD) in the past, purely software-related aspects are
attracting increasing attention and will become a crucial issue for future developments in
this field.

I. Introduction

Process and device simulation is commonly used for the design of new VLSI devices and

processes and as an explorative tool to gain a better understanding of process and device
physics. On the other hand, simulation is also carried out after the design phase in order
to optimize certain parameters of a technology, e.g., to improve device performance and
reliability or to increase the yield [1].

For all these tasks the term TCAD, short for technology computer aided desiyn, was born.
TCAD includes both physically rigorous and simplified process and device simulation in
one to three spatial dimensions. Fuirthermore, links to layout-oriented CAD and to circuit
simulation are required.

Depending on the particular application of TCAD tools, different demands arise: for the

development of new technologies and for the prediction of the behavior of new devices both
accuracy and robustness are required. In this case, very sophisticated physical models and
numerical techniques must be used, usually at a high computational cost. An example of
such a model is the two-dimensional simulation of the transient-enhanced diffusion during
rapid thermal annealing [2].

On the other hand, for statistical simulations [3] or post-design process optimizations
[4], speed is the most crucial issue, as physical models can be calibrated to an existing
manufacturing process and hence do not pose a reliability problem.

Independently of the progress in advanced physical modeling, the fast and simple "tuned"

models will still remain in broad use; there is no unique "best model" for all simulation
problems.

TCAD involves a number of scientific disciplines in addition to electrical engineering and
computer science. This has also had an impact on the properties of the software which
has been produced by that heterogenous community during the past 20 years.
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II. Frameworks

For a long time the importance of pure software issues for TCAD has been underestimated.
In the past few years, as these issues attract increasing attention, the major focus is on
the integration of TCAD tools into a common framework.

IH.1 TCAD versus ECAD

In the electronic CAD (ECAD) field, frameworks for tool integration and data interchange
standards have been emerging during the past years. Hardly any satisfying framework
implementations are available for TCAD, especially for advanced, multi-dimensional pro-
cess and device simulation. One reason for that is the difference in the sizes of the user
communities. Electronic CAD is more widely used than Technology CAD.
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Figure 1: Design levels and device count scale in ECAD and TCAD

Another possible reason for the differences between ECAD and TCAD in terms of progress

in frameworks and standardization is shown in Figure 1: in ECAD there have always been
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several clearly defined layers of design abstraction. Though the device count scale is open
towards the high end, there is a well-defined lower bound for ECAD, which is the single
device. For every order of magnitude in device count there is a common abstraction level
and at least one well-established data representation as well. For TCAD however, the
only evident lower boundary in terms of abstraction is the physical atom. There are
no "natural" intermediate abstraction levels and as an indirect consequence of physical
modeling there is no well-established unique data representation like in the ECAD case.

These considerations indicate that finding a unified data representation for TCAD is
dominated by semantic problems which are closely related to the large interval (Figure 1)
of device count to be represented, together with the lack of clearly defined intermediate
abstraction levels and the multi-disciplinary background involved in TCAD

I1.2 Framework Demands

As an operating environment for TCAD tools and engineers, a TCAD framework must
provide the following key features:

"* allow minimum effort integration of existing tools and facilitate the development of
new tools

"* allow casual users to use simulation in a black box manner

"* provide enough flexibility on the task level to accomodate easily to new design tirsks

"• provide an extensible database for design representation

"• be "open" in terms of platform independence, availability and the use of open
standards

"* provide standard functionality like visualization, interactive structure editing and
postprocessing as generic tools

11.3 Existing Approaches

Facing these rather rigorous demands and the potential problems stated above, one cannot
expect to find an easy and fast path leading to the ultimate TCAD framework. However,
various attempts to head in that direction may be found:

In the semiconductor industry there have been emerging a number of remarkable frame-
work efforts worldwide, such as an integrated system for statistical VLSI design [5] (Hi-
tachi, Japan), an integrated, graphical device design environment [6] (Phillips, UK), SAT-
URN [7] (Siemens, Germany) or the MECCA system [8] (AT&T, USA).

Based on an initial proposal by Duvall [9], there have been various Profile Interchange
Format (PIF)-based design environments both in industry (like the PRIDE [10] system)
and at universities (e.g. PROSE [11] from UC Berkely).

4
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Commercial TCAD vendors are integrating their tools and providing them with unified
user interfaces, like STUDIO from Technology Modeling Associates, or MASTERPIECE
from Silvaco Data Systems.

Depending on the intentions of the creator of the frameworks, different aspects, like a
rigorous task level implementation or a comfortable user interface [12], have been empha-
sized. Unfortunately, this has often been done at the expense of portability, or by leaving
out a unified data representation.

Recently, a client-server framework architecture has been introduced by the semiconduc-
tor wafer representation working group [13] of the CAD Framework Initiative (CFI), an
international standardization committee for ECAD. The intriguing goal of this approach is
to separate the physical modeling completely from tedious tasks such as grid generation,
interpolation, or geometry handling by providing these functions as a black-box server
which is accessed by the simulation clients via a procedural interface. This method is
very well-suited for the simulation of topography formation, however, it can be detrimen-
tal to applications with high data throughput or applications which exhibit performance
advantages thanks to a tight coupling between physical models and numerical techniques.

In an attempt to address all of the framework demands stated above, we have developed
VISTA, the Viennese Integrated System for TCAD Applications. It consists of a PIl
Database, which is an enhanced intertool version of the well-known profile interchange
format proposed in [9]. To accomodate the needs of existing TCAD applications, the
original PIF syntax was restructured by reducing the number of different constructs,
adding a few new constructs such as tensor product grid definition, and by defining
additional semantic rules for the use of standardized attributes. Our PIF implementation
can be used to store arbitrary LISP expressions for process flow representation.

Simulators and all other tools access the PIF database using the PIF Application Interface
(PAI) [14], which supports several programming languages including C, FORTRAN and
LISP. The PAI is a procedural interface for accessing the binary PIF database. It provides
functionality for creating, reading and modifying PIF objects. In this way the application
programmer does not need to know too much about the PI' syntax to be able to use
the PIF database. The PAI was designed as a strictly layered product to guarantee the
necessary functionality, performance and extensibility.

A system layer hides all system dependencies concerning communication with the operat-
ing system from the rest of the PAl. A caching layer takes care of performance and space
requirements. The interface layer allows access to the PIE objects suited for advanced
C and is the standardized interface to the PIF database. The application layer provides
a more comfortable access to PIF objects for applications written in C, FORTRAN or
LISP.

For the conversion from the binary intertool form to the intersite ASCII format the PIF
binary file manager (PBFM) has been developed. In this way the intersite exchange of
PIF files between different hardware and software platforms, for instance via electronic
mail, is supported.

The simulators are controlled by an interpreting TCAD shell [15] which integrates all
system components on the task level. The major benefits of selecting LISP as extension
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language are that full-fledged programming language features like branches, loops and
subprograms, mechanisms for defining new variables and and standard mathematical
operations and expressions can be utilized to define complex development tasks. The
XLISP [161 interpreter which we have chosen as basis for the TCAD shell, is a publicly
available software product written in portable C, and has the additional feature of being
highly system-independent.

The user interface of VISTA [17] is based on the X Wimdow system. By means of the X
Toolkit [18] it implements most of the functionality which is required to support TCAD
information flow as so-called widgets. The user interface is tightly coupled with the XLISP
interpreter. This combination of a widget-oriented user interface with an interpreter is
known to be a very flexible and promising concept [19], [20], [21].

An interactive device editor, generic postprocessing and visualization modules are also
part of the framework. Special emphasis has been put on the use of open portable subsys-
tems (which are mostly public domain products) to achieve a high degree of portability.

MByW

SAXLE i.3 0.8 FORTRAN

SUPRJW 4 1.7 C

FRM1.6 [1 1 ]2.1 FORTRAN

PISCES 2 1.3 FORTRAN

NOM406 5.2 1.3 FORTRAN

5.6 8.8
VIM 1.0 1 1 1 , C, LISP,

coded mamally SeCDaM automticaly

Figure 2: Comparison of source code sizes. VISTA does not include simulation tools.

Figure 2 shows the code sizes of well-known simulation tools. SAMPLE [12] (from UC
Berkeley) is a topography simulation tool, MINIMOS [221 and PROMIS [2] are two-
dimensional MOS device and process simulation programs, respectively, developed at TU
Vienna. SUPREM4 is a two-dimensional process simulation program and PISCES is a
two-dimensional device simulation program, both from Stanford University [23].

Given VISTA's remarkable code size compared to these classical single simulation tools,
it becomes obvious that a framework for tool integration and development must exhibit
a homogenous architecture in order to be comprehensible and maintainable.

This can be achieved through the use of unified concepts. The generalization ef .-dasting
solutions within the framework should be favoured over the introduction of ne'* r es. A
second key to a comprehensible system is the use of abstract concepts. In VISTA, tedious
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parts of the sourcecode, like the PAI or interface code which is required for multiaguage
progammig, is generated automatically from abstract upeciatns. Only the creative
parts are left to the programmer.

MI. The Future

It is a fact that the rapidly shrinking device dimensions and the increasing cost of ex-
perimental design optimization have been stimulating the evolution of TCAD; it can be
expected that TCAD will continue to evolve into several directions:

The exact future development of physical models is hard to predict, as models always
reflect the state of technology [24], [25]. Future models will have to be based on a lower
level of abstraction. As a consequence the complexity and the "bandwith" of models used
for TCAD will increase. As to computational techniques, it is obvious that the availability
of massively parallel computers will stimulate the development and use of parallelizable
methods, like Monte Carlo simulation, e.g. [26].

Besides the progress in physical modeling, the future of process and device simulation will
be significantly influenced by the introduction of TCAD frameworks and its impacts. This
integration will allow simulation to catch up with the physical reality. It is to be hoped
that TCAD frameworks will help to reduce the gap between the engineer's simulation
needs and the sophistication of the available models and simulation methods by providing
a "plug-and-play" environment for tool developers. One major requirement towards this
goal is the semantic standardization for TCAD data, which concerns describing process
information in a comprehensive and unambiguous way rather than finding appropriate
representation methods. Client-server concepts can be expected to be used in future
simulation tools in different places, e.g. for solving large linear systems.

A new object-oriented method for CAD tool management has been demonstrated through
the Cadwell design framework [27]. We believe that a similar method of tool abstraction
should be employed in a framework for advanced process and device simulation as well.

The importance of process and device simulation will increase in general, and as a con-
sequence of the broader use, performance, together with robustness and ease of use will
become even more crucial. The integration of different process and device simulators into
modern TCAD systems will become a necessity because of the inherent communication,
data transfer and maintainance advantages.
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The Application of Quadrilateral Finite Elements for the
Simulation of Recess T-gate MESFETs and HEMTs
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Abstract
In this paper we present a new finite element approach for the simulation of recessed T-
gate MESFETs and HEMTs based on quadrilateral finite elements. The discretization of
the current continuity equation, which is the crucial part of the simulation, is followed in
details. Two simulation examples - a 200 nm gate length MESFET and a 8-doped
pseudomorphic HEMT illustrates the usefulness of the adopted approach.

I. Introduction

The performance of the modem nanometer-scale MESFETs and HEMTs becomes strongly
affected by device parasitics such as coupling capacitances and access resistances [1]. In
recessed gate devices these parasitics are critically affected by the shape and surface condition
of the recess region. In addition the T-gate process designed to reduce the gate series resistance
[2] may also reinforce the parasitic capacitances. Although Hydrodynamic [3] and Monte Carlo
[4] simulation programs are making significant progress in properly describing the non-
equilibrium transport phenomena in compound FETs, the real shape of the gate recess is
generally poorly modelled, assuming planar or rectangular simulation domains. Surface effects
are also either neglected or modelled by fixing the surface potential or by increasing the surface
doping. Yet it is well known that this effects can in many cases have a more profound impact
on device DC characteristics and high frequency performance than the transport details in the
'intrinsic' region under the gate.
In this paper we describe the implementation of a finite element approach based on quadrilateral
finite elements for a precise description of the device's geometry and the realistic inclusion of
the surface effects in the simulation of recessed gate MESFETs and HEMTs. Several simulation
examples illustrate the work of the developed on this basis Heterojunction 2D Finite element
(H2F) simulator.

II. Model Description and Discretization

The heterojunction compound semiconductor device model equations used in the current
version of H2F for steady state simulation include Poisson's equation and electron current
continuity equation in a drift diffusion approximation

V.EFV]= -()(1)

V.1. =0 (2)

1. = -ep.V W, + eD.Vn (3)
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W= +L+k.Lln(Nc) (4)
q q

where all symbols have their usual meaning. While this approach is unable to describe precisely
the device's transport, in many cases it is justified by the need to accurately predict the device
pmsitics.
A great deal of attention has been paid to the proper handling of the surface effects in the
simulation. The charge term in the Poisson's equation is given by

p(F) = q(NI& + 6(±)Ný + p - n) (5)

Where N" and Ný represent charged bulk and interface states respectively. The symbol
6(1) indicates that N' is surface charge which may be places along any (in the general case
curvilinear) interface in the device. Similar to the bulk model the generalised interface trap
model includes acceptor and donor like states with an arbitrary energy position whose
occupation depends on the quasi-Fermi level and the potential variations. The simulation
domain includes the space above the semiconductor surface providing a proper interaction
between the charge on the surface states and the spreading surface potential.

Quadrilateral finite elements have been used for the discretization. The grid is generated by
appropriate deformation of originally rectangular sub domains. Fig. I a,b illustrates this
procedure for the gap between the gate and the cap layer of a recessed gate FET

ST_!l LW i na_ '"
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(a) (b)
Fig. 1 Generation of the quadrilateral grid in the recess gate region. (a) the initial rectangular

grid (b) the quadrilateral grid after suitable deformation

The Galerkin finite element method has been adapted to solve the Poisson's equation. The
corresponding integration over the quadrilateral elements during the discretization was carried
out by a linear isoparametric mapping (Fig. 3) A control volume method has been adopted [5]
for the discretization of the current-continuity equation (Fig. 4). In this approach each
quadrilateral element is divided into four subelements and the discretization is carried out
balancing the current flowing in and out of the subelements attached to a given condensation
point. Thus for vertex I (See Fig. 4) 141 - 121=0. A central point integration is used to calculate
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the current through each of the subelement sides. For example fl2=d1J]2. where the current
density J12 is approximated by the standard Gummel expression.

The growth functions involved in the derivation of this expression are also used for
interpolation of the electron concentration along the sides of the element. The electron
concentration in point A for example is given by

"nA : WAfln + WA4n4  (7)
where

X4AbC q~i,&W

WA4  U T (8)

r( kTl4
and

WA, =1- WA4 (9)

It has been found that this discretization is stable for arbitrary shapes of the quadrilateral
elements and does not leads to the spikes typical for obtuse triangles. The same approach may
be used for discretization of the momentum and energy conservation equation in the quasi-
hydrodynamic transport treatment.

i 4 4

xxx114 14 1

2 2

Fig. 2 Linear isoparametric mapping Fig. 3 Discretization of the current continuity
equation

The grid generation preserves the number of grid points in lateral and vertical directions and
leads to a regular nine diagonal matrix of the discretized equations. A Fast Incomplete LU
Factorisation Biconjugate Gradients (ILUBCG) solver is used for the numerically intensive
iterations. The solution of the Poisson's equation involves only a few biconjugate gradient
steps per Newton iteration that significantly reduces the total computation time. The
convergence problems related to the strongly localised, potential dependent interface charge
have been resolved by appropriate dumping. ILUBCG also solves without complication the
discretized current continuity equation.

Although H2F is 'serial' code, by using a pipeline fileserver, multiple copies of the program
can be run concurrently on MIMD machines (in our case a Parsytec Model 64 transputer
system), calculating in parallel, separate sets of input device parameters. This extends
dramatically the capability of the simulator for real design work such as structure optimisation,
sensitivity analysis and yield prediction where several hundred simulations are often carried out
during single investigation.
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M. Exampks

Two simulation examples illustrae the application of the developed quadrilateral finite element
approach for the simulation of complex shaped devices. The first example is concerned with the
simulation of a 200 nm gate-length state of the art MESFET, fabricated in the Nanoelectronics
Research Centre at the University of Glasgow [6]. The flexibility of the quadrilateral grid is
illustrated in Fig. 4 where the cross sectional photograph of the device is compared with the
corresponding H2F simulation domain.
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X, cm xlE-5 X, CM x1E-5

(a) (b) (c)

Fig. 4 Simulation of a 200 nm gate length MESFET. (a) Cross sectional SEM view (b) the
corresponding finite element grid (c) potential distribution at VG=-O.4V and VD=2.5 V
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(a) (b)

Fig. 5 Simulated and measured ID-VD characteristics of the device illustrated in Fig. 4. (a)
influence of acceptor type surface states position Ps (b) influence of the surface state
density Nit

The influence of the position and the density of these surface states on the device's ID-VG
characteristics for the MESFET shown in Fig. 4 is given in Fig 5 a,b. Our experimental
measurements are in good agreement with the expected position and states density Ps=0.6 eV
and Nit=2e12 cm-2.

The second example is the simulation of a delta-doped pseudomorphic HEMT whose behaviour
is significantly influenced by the series resistances introduced by an undoped cap layer (Fig. 6).
Although the drift diffusion approach underestimates the current, it has been found that by
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adjusting the saturation velocity in the mobility model (to 1.4x10 7 cm/s in this cas) the
meamured chaatistics can be acceptably matched.

1. = 0.06

0.052
0.5 - , 0.04 -=31
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-1.400T I
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(a) (b)

Fig. 6 Simulation of 200 nm gate length pseudomorphic HEMT (a) device structure and
potential distribution at VG=3.5 V and VD= 2 .5 V (0 correspond to -4 V and the
increment is 0.5 V) (b) measured (lines) and calculated (symbols) ID - VG
charactestics

IV. Conclusions

The developed quadrilateral finite element approach provides the necessary flexibility for the
proper handling of shape and surface associated parasitic effects in the modern recessed T-gate
FETs. In the example simulations, where device parasitics play an important role, the
implemented drift-diffusion approach leads to a reasonable prediction of the device behaviour
with a simple tuning of the saturated carrier velocity. However, the proposed finite element
scheme may be extended to incorporate the hydrodynamic approach in the same manner as the
finite difference case.

References

[1] P.H. Ladbroke, AJ. Hill and J.P. Bridge. "Fast FET and HEMT Solvers for
Microwave CAD", J. Microwave and Millimetre-Wave Computer Aided Eng., Vol. 3,
No. 1, pp.37-60, 1993.

[2] P.C. Chao, P.M. Smit, S.C. Plamaeteer, and J.C.M. Hwang, "Electron Beam
Fabrication of GaAs Low-Noise MESFET's Using a New TriLauer Resist
Technique", IEEE Trans. Electron Dev., Vol. ED-32, No. 6, pp.1042-1045, 1985.

[3] J.-R. Zhou and D.K. Ferry, "Simulation of Ultra-Small GaAs MESFET Using
Quantum Moment Equations", IEEE Trans. Electron Dev., Vol 39, No. 3, pp.47 3 -
478, 1992.

[4] LC. Kizilyalli, M. Artaki and A. Chandra, "Monte Carlo Study of GaAs/AlxGa1.xAs
MODFETs: The Effect of AlxGal.xAs composition", IEEE Trans. Electron Dev., Vol.
38, No. 2, pp.197-206, 1991.

[5] A. Asenov and E. Stefanov, "IMPEDANCE 2.0-. A Flexible Concept for Process and
Device Simulation", Proc. ISPPM, pp.272-286, Varna 1989.

[6] N.I. Cameron, G. Hopkins, LG. Thayne, S.P. Beaumont, C.D.W. Wilkinson, M.
Holland, A.H. Keanand and C.R. Stanley, "Selective Reactive Ion Etching of
GaAs/AIGaAs Metal-Semiconductor Field Effect Transistors", J. Vac Sci. Technol B,
Vol. 9 p.3538, 1991.

49

V V V••



Numerical Simulation of IGBTs at Elevated Temperatures
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Abstract
In this paper we present a 2D finite difference device simulator which has been developed to
underpin the design and optimisation of power IGBTs. The simulator has been used to
investigate the effect of elevated temperatures on the performance of the IGBT for use in
environments where ambient temperatures up to 200°C are likely. The preliminary results of
this investigation are reported here.

I. Introduction

The Insulated Gate Bipolar Transistor (IGBT) (Fig.l) is at present one of the most widely used
power semiconductor devices [1]. Its popularity among the designers of power electronics
systems is due to the lucky combination of a low forward voltage drop, typical for power BJTs,
and gate controlled turn-off and high switching speed characteristic of power MOSFETs [2]. At
the same time the coupled field effect and bipolar actions make the device operation quite
complicated [3].

Polysificon Metal IGBT Cathode
IGBT Gate Cathode MOSFET Contacts

IS Chane Collcto

I
n+ Buffer Layer

II r, p+ Bipolar Emitte rG--a

Metal IGBT Anode p+
Fig 1. IGBT structure Fig 2. IGBT cell structure and simulation

domain

The device behaviour is strongly affected by the cell geometry, MOSFET channel length, actual
doping distribution and lifetime killing treatments. The traditional empirical approach to the
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device design is inadequate and impractical. It is widely recognised that the device design and
optimisation should rely on a proper 2D or even 3D numerical simulation [4]. Although many
general purpose simulation packages are now available, they are not usually optimised for the
simulation of IGBTs and frequently do this job slowly and unreliably.

Here we report on a new power semiconductor device simulator developed to underpin the
design and the optimisation of IGBTs. The simulator have been applied to study the behaviour
of relatively short channel IGBTs at high temperatures up to 2000C. Such high temperature
operating conditions are typical for the application of these devices in aircraft power conversion
systems.

II. The Simulation Program

Our steady state IGBT simuator is based on the solution of the Poisson equation and current
continuity equations for electrons and holes. Heavy doping effects are included through
bandgap and electron affinity variation in a manner similar to those used for the simulation of
compound semiconductor devices. A finite difference method is adopted for discretisation.
Although it is well known that the global Newton procedure provides better convergence in the
case of strongly coupled equations, a modified Gummel-like iterative scheme is used for
nonlinear iterations because it provides a simpler way towards the parallelisation of the
simulation code which will be the next step of this development. An appropriate logarithmic
dumping for the Poisson equation in combination with a bounded change in electron and hole
concentrations [5] ensure convergence in the whole dynamic range of applied on-state voltages
up to latch-up conditions. In reverse bias mode the logarithmic dumping provides convergence
for the Poisson equation up to several thousand volts. A fast Incomplete LU Factorisation
Biconjugate Gradient (ILUBCG) solver is employed for the solution of both Poisson and
current continuity equations. The solution time of the three nonlinear equations in the Gummel
cycle is significantly reduced if only a few ILUBCG steps follow each nonlinear Newton like
step.

In order to simulate properly the high temperature IGBT behaviour appropriate semi-empirical
expressions are included for all relevant silicon parameters. The temperature dependent mobility
model of Nishida and Sah [6], which includes the scattering mechanisms of surface and bulk
acoustical and optical-intervalley phonons, bulk ionised impurities, oxide charges, surface
roughness and dipoles or neutral surface states, was modified to account for the carrier-carrier
scattering on high injection cases. The recombination terms consist of two components: a
Shockley-Read-Hall term and an Auger recombination term. Although slight temperature
dependence of the electron and hole lifetimes and Auger coefficient may be expected, due to the
lack of relevant data we assume in our analysis that these parameters are temperature
independent.

Fig.2. shows an octagonal IGBT cell structure with our solution domain which is a cross
section along the line A-A' and which takes into account the symmetry between two
neighbouring cells. It is clear however that the 2D simulation is quite a rough approximation to
the actual 3D nature of this device and cannot represent cell interaction totally accurately, for
example the influence of the distributed parasitic vertical JFET. It is planned to develop a 3D
device modeling program implemented on a Parsytec parallel transputer system in order to
investigate the effects due to the inherent 3D nature of the device. Additional uncertainty in the
results of the simulation is introduced by the approximation for the lateral distribution of the
impurities in the MOSFET channel. For a given vertical doping profile (measured using
spreading resistance method), experimental results have shown that different assumptions for
the lateral impurity distribution can have a marked effect on the subthreshold MOSFET
characteristics and the threshold voltage. It is therefore of vital importance when modeling an
actual device to have an accurate 2D and in future 3D description of the doping profile,
particularly of the channel region, if the results are to give a reliable model of the device
characteristics.
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III Results

Three typical ID-VD curves calculated at room temperature, 100°C and 200°C are given in Fig.3
for VG=15V which is the expected operating gate voltage for the device. Fig.4. shows a plot of
ID vs VG for room temperature and 200°C at a drain voltage VD=2V. Both a logarithmic plot
(solid lines, left axis) and a linear plot (dotted lines, right axis) are shown on the same graph.
The potential, electron and hole distributions (VG=l5V, VD=2V) for the top region of the
device (to a depth of 15prm) at room temperature and at 200NC are presented in Fig.5(a,b,c) and
Fig.6(ab,c) respectively. Equipotentials are at -0. 15V intervals while equi-concentration
contours show the power of ten of the concentration, i.e. contour no. 16 represents 1016cm-3

1200. 1000- 400
T-270C 0a-- T=270C
T=1000C T=2000C /

900- T=200QC '

100-

2, 2
600 2 -00

I -,
300- 1110100

0-1 0

0~ I I I 1- 0

0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 7.0 8.0 9.0
VD(V) VG(V)

Fig.3. ID-VD characteristics at different Fig.4. ID-VG characteristics at different
temperatures (VG=15V) temperatures (VD=2V)

The high temperature has two main effects on the IGBT characteristics. Firstly the on-state
current is reduced by over 50% as the temperature increases to 2000C as can be seen clearly
from the ID-VD plot and also from the ID-VD plot for voltages above the threshold voltage. This
means a significant increase in the on-state resistance and on-state power losses. The overall
current decrease at 200*C is mainly due to the mobility reduction that decreases the MOSFET
current and at the same time increases the resistance of the drift region. The larger voltage drop
across the drift region at 2000C, as a result of higher resistance, is clearly seen in Fig.6(a). As
can be seen from the comparison of the electron concentrations in Fig.5(b) and Fig.6(b) the
carrier concentrations in the drift region in conductivity modulation mode are almost the same
(approximately 1016 cm-3).

The ID-VG characteristic reflects the MOSFET action of the IGBT gate and as such exhibits the
kind of temperature dependence that is expected for a MOSFET [7,8.91. This is a reduction in
the current for voltages above the threshold associated with the drop in mobility, the lowering
of the threshold voltage, and a decrease in the sub-threshold slope.

The second important effect at elevated temperature is the decrease in the static latch-up current
associated with the turn on of the parasitic thyristor, which exists in the device structure [10]. In
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Fig. 5 Potential and carrier concentration distributions at room temperature (VG=lI5V, VD=2V)
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the p-region the hole current flows around the n+-region and due to the resistance of the
p-region a voltage drop is produced. If the current is large enough then this potential difference
will be sufficient to forward bias the n+-p junction at the channel end injecting electrons from
the n+-region into the p-region, turning on the parasitic thyristor and latching up the device. At
VG=15V the static latch-up occurs at a current density of approximately ID=1 150A/cm2 at room
temperature and at ID=440A/cm 2 at 200*C. The reduction in the static latch-up current is due to
the reduction in the built-in potential of the n+-p junction and to the increase in the resistance of
the p-region. The potential, electron and hole distribution at latch-up are give in Fig.7(a,b,c). It
is interesting to note that the latch-up occurs close to the channel, near the corner of the
n+-region.

IV. Conclusions

A program has been developed which is suitable for the simulation of IGBTs and which
includes the temperature dependence of semiconductor parameters. The study of the high
temperature IGBTs operation has shown that increasing the operating temperature of the device
results in a significant reduction in on-state drain current for an applied drain voltage. The
forward voltage drop across the drift region of the device also increases, as a result of increased
resistivity, which leads to an increase in on-state losses. However this is accompanied by the
lowering of the threshold voltage. The elevated temperature also reduces the maximum available
drain current before latch-up of the device occurs.
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Abstract

A new comprehensive and efficient bipolar junction transistor (BJT) device model is
presented. This model self-consistently solves the Boltzmann transport equation (BTE)
for electrons, the current-continuity equation for holes and the Poisson equation. The
calculations provide almost the same information as similar Monte Carlo simulations, but
require only 1% of the CPU time. In addition, a new discretization has been employed
which facilitates convergence.

I. Introduction

In the past, device modeling by direct solution of the Boltzmann transport equation
(BTE) was usually considered too difficult to be achieved. The difficulties were mainly
due to dimensionality problems (the steady-state BTE is a 6-dimensional equation), and
problems evaluating the complicated collision integral.

Recently, however, the Legendre polynomial (LP) technique has been demonstrated
to provide fast and accurate solutions to the BTE[1,2,31. Use of the LP technique al-
lows one to overcome problems of dimensionality, and also facilitates evaluation of the
collision integrals. However, until now the method was used only for very simple, largely
unrealistic test structures[2], or only as a post-processor to hydrodynamic simulations[3].
Here, we overcome these limitations and adapt the new LP technique to actually model
BJT's.

II. General Approach

In the present work we self-consistently solve the electron BTE, the Poisson, and
hole-continuity equations to obtain the electron momentum distribution function for an
entire prototype BJT. We first transform the BTE into a tractable expression using a
first order LP expansion: this reduces the dimensionality of the system, and allows us to
integrate the collision terms analytically.

To numerically solve the system, we first discretize the BTE using a new Scharfetter-
Gummel-like algorithm which employs special state variables. After discretizing the
Poisson and hole-continuity equations, the overall nonlinear system is then solved using a
Gummel-type iteration scheme. This algorithm provides nearly exponential convergence
to efficiently obtain the distribution function for the entire device without the statistical
noise which is characteristic of Monte Carlo methods.
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IIM. The Boltumann-Poimon-Continuity System

The device model consists of the Poisson equation (1), the space-dependent BTE for
electrons (2), and the current continuity-equation for holes (3). The collision integrals in
the BTE account for the effects of acoustic and intervalley phonons, as well as impact
ionization scattering. These scattering cross-sections, as well as nonparabolic conduction
band-structure values, are identical to those employed in Monte Carlo calculations[4].

eI
V'O(r) [ ~ n(r) - p(r) + NA(r) - ND(r)]()

~Vkc V~f(k, r) + jVrO(r). Vkf(k, r) = afk r) + [8f( r) + [acf(k. r) (2)

Vr"- [#pp(r)VrO(r) + ApVtVrp(r)] = R(O, n, p) (3)

where n(r) = f(k, r)dk is the electron concentration; p(r) is the hole concentra-
tion; O(r) is the potential; ND(r) and NA(r) are the doping concentration for donors
and acceptors; f(k, r) is the distribution function; R is the recombination rate, including
impact ionization and Shockley-Read-Hall (SRH) recombation; Vt = KBT/e; the sub-
scripts ac, iv, ii correspond to acoustic phonons, intervalley phonons, impact ionization,
respectively.

IV. Method of Solution:

1. BTE Formulation: Legendre Ezpansion
We first express the distribution function in terms of Legendre polynomial basis func-

tions:
f (k, r) = f(k, x) = fo(e, x) + kg(e, x)cosO (4)

where 0 is the angle between VO(r) and k; fo(E, x) and kg(c, x) represent the coef-
ficients of the symmetrical and the anti-symmetrical parts of the distribution function
respectively.

In solving the BTE, our objective will be to determine the unknown coefficients fo
and g. To determine these coefficients, we next substitute the Legendre expansion into
the BTE, and use symmetry to obtain 2 equations for the 2 unknowns fo and g.
2. Numerical Solution of BTE: A Scharfetter-Gummel-Like Approach

At this point, the typical approach would be to discretize and try to solve the re-
sulting equations directly. However, this direct approach would lead to a discrete matrix
which is ill-conditioned, would not readily account for the exponential variation in the
distribution function, and would inhibit obtaining a solution to the overall Boltzmann-
Poisson-Continuity system.

To overcome numerical problems, and routinely solve the coupled system, we devel-
oped a Scharfetter-Gummel-like discretization scheme to resolve the exponential behavior
of the distribution function. This scheme enhances the diagonal elements of the discrete
coefficient matrix, and helps to numerically account for the rapid variation in the dis-
tribution function. With this approach, fo(c, z) is expressed as the Slotboom-like form
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fo(e,z) = n(x)q(c,x); and n(x) is given as nju(x)exp(O(x)/Vt). We then substitute
these new variables into the symmetrical and antisymmetrical equations obtained from
the original BTE, and discretize using finite differences. We next analytically integrate
the rapidly varying part of the difference equations between grid points. This allows us
to account for the exponential variation of the distribution function analytically, thereby
alleviating the computer of much of the burden. The discretization is then completed to
yield a matrix equation with significantly enhanced diagonal terms. This discrete ver-
sion of the BTE is then solved using SOR-type iterations in the real-space domain and
sparse-matrix Gaussian elimination in energy-space.

3. Self-Consistently Solving the Coupled System
With a robust method for solving the BTE developed, the entire coupled Boltzmann-

Poisson-Continuity nonlinear system is solved using a Gummel-type iteration scheme.
The Poisson equation is directly discretized and solved with sparse matrix algebra. The
hole-current-continuity equation is discretized with the standard Scharfetter-Gununel
approach, and solved directly with sparse matrix Gaussian elimination. To facilitate
convergence of the overall scheme, special damping and weighting factors have been
developed which help to guide each Gummel iteration toward the proper solution. The
flow chart of this numerical procedure is shown in Fig. 1.

V. Results

Simulation results of a submicron n+/p/n-/n+ BJT are shown in Figs. 2 to 8. In
Fig. 2 the prototype BJT structure is shown. Fig. 3 shows the distribution function
for the entire device. In Figs. 4 and 5 we show calculated values for average velocity,
carrier concentration, average energy and electric field. The figures also show that good
agreement with MC calculations, which employ the same transport model, was obtained.
It is worth noting that velocity overshoot, which is characteristic of non-equilibrium
electron transport, is observed near the p/n- junction. To demonstrate the robustness
of the algorithm, in Figs. 6 to 8 we show results of average energy and velocity, as well
as ionization coefficients, calculated for a large range of applied biases.

VI. Conclusion

We have developed an accurate and stable approach to BJT simulation by the direct,
self-consistent solution to the Poisson, hole-continuity and electron-Boltzmann equations.
The method calculates the distribution function for the entire device. Furthermore, the
method uses less than 1/100 the CPU time required by similar MC calculations.
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Abstract

A new self-consistent charge-control model which includes models for realistic trapping
processes is described for a high electron mobility transistor (HEMT). This generalised
HEMT model takes into account the effects of deep levels both in semi-insulating GaAs and
doped AlGaAs layers. It is shown that conventional charge-convol models are insufficient
to describe HEMT operation near pinch-off and in the normally-on mode. The model is used
to investigate the effects of Fermi-level pinning at the semi-insulating interface on the device
performance and is shown to lead to less injection of electrons into substrate.

I. Introduction

An undersdig of the trapping mechanism in HEMTs is very important for developing
accurate models for HEMT characterisation. Trapping of electrons in doped AlGaAs layer
and semi-insulating (SI) GaAs substrate is not only responsible for different anomalies
observed at cryogenic temperatures but limit the device performance at 300K as well.
Examples include the collapse of I-V characteristics, decrease in both maximum
transconductance and in the gate voltage swing, shift in pinch-off voltage, slow transients in
switching, and generation-recombination noise. These effects become more pronounced in
very short channel HEMTs for millimeter-wave applications. Although trapping phenomena
are very important in determining the crtistics of HEMTs and there has been significant
amount of research directed towards understanding the basic physics of deep levels in doped
AlGaAs layers[l]-[2] and SI substrate [3]-[4J, there has been little theoretical effort devoted
to incorporating trapping mechanisms in the device models. The influence of Fermi-level
pinning at the GaAs substrate on HEMT operation has been discussed by Krantz et al [5]
using analytical expressions. Shawki et al [6] have included in their two-dimensional model
the trapping process associated with the doped AIGaAs layer by assuming that all donors are
electrically active as DX centers. They demonstraed that the DC t can be
lowered as much as 60% due to electrons trapped in the doped AfGaAs layer. Japanese work
[71 has confimed that DX centers are also present in n-type GaAs and become the ground
state when pressure exceeds 20 K bar. This result provides the strong evidence that DX
properties are associated with isolated donors. The measurement work done at IBM Thomas
J. Watson Research Center [2] has ftrther shown that there is a strong variation of trapping
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kinetics with change in alloy composition of AI1 aI.S-. Thee results strongly suggest that
trapping models should include more than one donor level.

In our recent paper [8], we have presened a more realistic three-level trapping model for
doped AlGaAs layer. In this paper we present a new self-consistent charge-conmrol model
which includes realistic trapping processes in both the doped AIGaAs and SI substrate. The
model provides a natural explanation of the published experimental results related to trapping
mechanisms and demonstrates the role of deep level states on the operation of single-, multi-
channel, inverted and pseudomorphic HEMTs.

U. The Charge-Cotr Model

In this section a self-consistent charge-control model incorporating deep level effects is
developed by modifying the Poisson equation to include trapping effects. Based on the results
of a self-consistent quantum mechanical model, which shows that most of the electron reside
in first three quantum energy levels, and on the study of Yoshida [91 that a classical model
with Fermi-statistics predicts the device performance with good accuracy, a fast and accurate
charge-control model is developed. The present model is based on self-consistently solving
Poisson and Schr6dinger equations for a maximum of up to three quantum energy levels and
applying a classical model with Fermi-statistics for the remaining electrons. The self-
consistent quantum mechanical model has been described in the lierature [9]-[10] and only
the broad principle will be described here. The electrostatic potential is related to charge-
distribution by Poisson equation

(e V(x)) + p(x) = 0 (1)

where p is the net local charge density, and the envelope wavefunction I, for the ith sub-band

satisfies the schrodinger equation

V ±- ~)I+ [,E,- V,(x)Iix= 0 (2)

where m" is the effective mass, E, is the eigen energy for the ith sub-band and V, is the
potential including the local exchange correlation coefficient. The Fermi level is assumed to

be constant throughout the semiconducting layers in equilibrium and the self-consistent
solution of equations 1 and 2 gives the accurate band profile, sub-band energies and Fermi
level.

A. 7Te Subsrate 7rap Model

A high density of both donor- and acceptor-like traps exists in the SI substrate. It is generally
accepted that there are up to 4 traps which are important in determining the properties of SI
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GaAs [31-14] and only these traps ame included in the presen charge-control model. Ile first
of these is EL2 level deep donor which resides at an energ leve 0.38eV below the coeuction
band edge in co ~rations ranging between lOP and 10e m*'. lTh shallow donor and
WWPWo UVas awe genealy present in cnetainof abou 1023 in3. The shalow donor is
auributed to silicon introduced from the walls of reactor vessl and shallow acceptor is
associated to carbon Finally, a deep acceptor level is present at an energy level about 0.8
eV above the valence baud edge. The local net charge density in SI substrate is given by

p a q[ND+,,,+ N,-N +P] (3)

where ND, is the doping density, NM. Nxv are the net densities of positive trapped charge in
the Shallow and deep donor traps and NO, Nw are the net densite of negative trapped
charge in Shallow am! deep acceptors traps respectively.

B. The Depe Cannel )Wp MOMa 1.0o-M "ws rg

The doped Al~hAs layer inroduces 18... O Sustatoe Trq"#V
several undesirable effect for
HEM]' operaton. They are mainly
related to large number of deep '5
states which becom dominant for
M molefractons -a0.22.T1he
doped layer traping Mechanism is OA-
incorporated in the present charge-
control model based on simple three
donor-level model which is 0.2

described in detail in our recent...... G&Bisa-02
Paper [8J.- However, as we will 0.0- 1
refer to itinthis paper, abrief 0006 01 01 2 02 . .5 O
description of it is included here for 0.0vrs Axis 0nde The6 Gat 0; 03 .3) O

the sake of completenes. Thernvre xsUdrTh ae(~n
doped donor atoms ca occupy Figure 1.- Comluction band energy of a single channel
either of the three donor levelsHM alnthtrsvseaiumrtegt.
shallow, deep, or DX. The totalln hetaserea udrth ae

donor doping density in our model
is given by the awi of the densities of the three donor levels. This model is consistent with,
the models treated theoretially by Morgan [11] and also accoumts, for experimental results
obtained by Mooney et al [2]. The local net charge density in AIGa.As layer is given by

P - q[NjD-NT-NJ.-NjDx.-n+p] (4)

whete N,, N13, N= are respectively the net densities of electrons trapped in the shallow,
deep and DX levels.

C. The 7mp Fillin Factor
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ha *MtTa, the dessity of Mobile_ _ _ _ _ _ _ _ _ _

N 6ges depends an the electron as a .4v
trp;ing in the trap levels. The a

fill"n of these trap levels is 4ia sI- v.t Suaef TOMPpi
calculated based on a Shockley- 16 *~" &AW v.ne.VIPPW
Read-Hall model [111-[121 for

level. The donor tras are positiv
when empty (iLe. when occupied b
holes) and nuitral when filled (i.e. OM
when occupied by electrmn), and

acepo traps aft negativ when -

feie and neutral when empty.0. 0.6 . 03 05 C

Tran~m~e Aids Under The Gate (JAM)

M. Remilts and Discussions
F~igure 2. Electron density of a single channel HEMT

Figures 1 and 2 respectively show along the transverse axis uve the gate.
the single-channel HEMT's

conuctonband energy and electron density along the transverse axis under the gate, with
and without the SI substrate tappig effect. The simulation results have shown that trapping
in the SI substrate have a significant effect near pinch-off. The pinning of the Fermi Level at
the SI interface makes the conduction band more abrupt and an inuterfce depletion region is
formed. This results in decreased electron 4lensity near the SI interface due to narrowing of
the channel. At the same time this

leads to ofCanijeln Bsd Eswrg (9V)led ogreater cofaeto Ebacmm Dswuly x le' (ml'
channel electrns and leas sibstrate 03..Bi - 49V
electron injection. Due to improved 1.5 - -- Wkh O, LAWe & MonaW Trappuig
carrier confinement with the SI A-Wkh Dope Laye Trapin
sustrate, the device has good Vkw rpf

puich-off caatrsis

The simulation results have shown
that doped layer traping edffects
become more imnportant as the gate-
source voltage is made more
positive. This is due to the increase 10 _ __________

in parallel current in doped AIGaAs_ _ _ _ _ _ _ _ _ _ _

layer and saturation of two- 0.0 OM 0'1 0.1ss 0.;5 0.3
dimensional electron gas which no, Trawnsee Amd Unde TMe Gaob (am)
longe responds to variation in gate
voltages. This demonstraes the Figure 3. Conduction band energy and lctron density
decrease in imum trans- of a two channel HEMT along the transerse ai
conductance and collapse of IV Unde the gate.

chaacerstcs, at high gate
voltages. Figure 3 shows the charge-contrl results of a two-channel AIlahs/GaAs HEMT
and demonstrates that doped layer trapig effect is dominant for all the gate-biases. In multi-
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channel HEMTs, the effect of trapping is more pronounced in the second doped layer becaus
Parallel cr w at in it flows for almost all the gate-bias voltages. In pdoirphcHMr
the effect of the SI subwtate is les prwounwied.

IV. C41mch.im

We have developed a new self-consistent charge-control model for HEMfs that includes
trapping effects in the SI GaAs substrate and doped AIGaAs layer and provides a physical

undrsanding of short channel HEMT operation. It is expected that the present charge-control
model will be useful in developing more realistic and accurtef models for HEMTs.
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Transport Coefficients For A GaAs Hydrodynamic Model

Extracted From Inhomogeneous Monte Carlo Calculations

Me-Ke. Iong and Ting-wei Tang
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Abstract
The validity of energy-dependent relaxation times often used in a GaAs hydrodynamic
model has been carefully examined using the self-consistent Monte Carlo simulation. We
have found that those transport coefficients associated with the intervalley transfer from
the lower to the upper valley are not single-valued functions of the averaged electron en-
ergy in the valley. If, instead, the valley population ratio or the average energy weighted by
the valley population ratio is used a substantial improvement in accuracy can be achieved.

I. Introduction

Conventionally, macroscopic (averaged) relaxation times such as r., r. and rw appearing
in the hydrodynamic (ED) transport equations are assumed energy-dependent and deter-
mined by performing Monte Carlo (MC) calculations under steady state and homogeneous
field conditions. These expressions are often extended to the case of inhomogeneous fields
without any justification. Sandborn et al. [11, using the MC simulation, found that both
the energy and momentum relaxation times in an equivalent single-valley model under the
transient condition differ very much from the steady state and homogeneous field values.
Yamada [2] also observed the discrepancy in the relaxation times between the homoge-
neous and inhomogeneous field conditions. He suggested that the relaxation times should
depend not only on the energy but also on the valley population. In this study, instead of
a single-valley model, a three-valley HD model for GaAs has been developed. The traks-
port coefficients appearing in the ED model for homogeneous and inhomogeneos field
conditions are evaluated by a single particle MC simulation program and a multi-particle
self-consistent MC simulation program, respectively. A one dimensional N+ - N- N+
GaAs ballistic diode was used as a test device. This approach allows us to rigorously
exainihe the validity of the energy dependence of each relaxation time as well as provides
us valuable information for a more appropriate description of the relaxation times.

II. Moments of the Boltzmann Transport Equation

The RD travsport equations can be obtained by taking various moments of the Boltzmann
transport equation (BTE) [3]. Extending the work of [4], [5] to a multi-valley system, we
obtain the following steady-state conservation equations for the ith valley:
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17 07i q, (2)

V.(,•)_•.P= W,-Wo _w w, + ,n, wr, Wn. w, (3)

q+ - .qS qSj (4)

where (. = (i), U, = (,•.,),w, = = (i.c,) and k. = (tiiý,.). In the conven-
tional HD transport model, the transport coefficients (r,,, p, tw,etc.) are usually assumed
to depend on the average energy,W(r. This approach ignores the dependence of the
transport coefficients on the shape of the distribution function.

III. Self-Consistent Monte Carlo Simulation

To examine the accuracy of energy-dependent transport coefficients, we begin with a
rigous solution of the steady-state BTE by the MC method. The simulation program
uses an analytical multi-valley, non-parabolic band. The following types of scattering are
taken into account: acoustic phonon scattering, optical phonon scattering, polar optical
phonon scattering, ionized impurity scattering, equivalent and nonequivalent intervalley
scattering. The various scattering parameters are similar to those used in [6]. In this
work, a one-dimensional N+ - N - N+ GaAs structure with a 0.5 im N-region was ex-
amined. The doping densities of the three layers were Nd = 1 X 1017 cm 3-, 1 x 10 1 ecru-m
and I X 10 17Cm-3 , respectively. The applied bias was 2.0 volts. Fig. 1 displays the doping
density and electric field profiles within the device as obtained from the self-consistent
MC (SCMC) simulation. Fig. 2 shows the r- valley velocity and e-nergy profiles.

IV. Results and Discussions

At each position within the device we evaluated the transport coefficients and the aver-
age energy in each valley by the SCMC program. We found that these coefficients are
generally a function of the local average energy in the valley except for those due to the
intervalley transfer from the lower to the upper valley (i.e. r --+ L, r --+ X, and L --+ X.).
Figs.3,5 and 7 respectively display the r --+ L intervalley transfer coefficients, 76Mr., IrL

and rwrL versus the average r-valley energy, Wr, for both the homogeneous and the in-
homogeneous field calculation. The "hysteresis" loops clearly indicate that none of them
can be described as a single-valued function of Wr. For these cases, the energy-dependent
transport coefficients which were obtained from the homogeneous field calculation always
underestimate the actual one in the increasing field region and overestimate the same in
the decreasing field region. If, instead, Wr is weighted by the valley population ratio (i.e.,
B Wr) then the hysterisis loop for rrr. can be significantly reduced (see Fig. 4). This is
motivated by the fact that the valley population ratio more or less reflects the fraction of
electron population which have sufficient energy to transfer from the lower to the upper
valley. We also found that using the valley population ratio alone (i.e., -) the hysterisis
loop can be considerably reduced for prL and 'Wr& as seen in Figs.6 and 8,respectively.
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The result for rrL is very similar to rwrL and that for P.rL is similar to %rL. Once the
hysterisis loop is reduced, these transport coefficients can now be modelled empirically as
singe-valued functions of the valley population ratio or the energy weighted by the valley
population ratio.

V. Conclusions

A SCMC simulation program was used to examine the conventional assumption of energy-
dependent transport coefficients in a multi-valley system. We found that the transport
coefficients related to the intervalley transfer from the lower to the upper valley (i.e.,
r -4 L, r --# X and L -* X) are not a single-valued function of the average energy
in the valley. A substantial improvement in the accuracy can be achieved if the valley
population ratio or the average energy weighted by the valley population ratio is used.
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Abstract

The three-dimensional (3D) depletion approximation is computed numerically by solution
of a modified version of Poisson's equation for the electrostatic potential. Nonlinearities
are resolved by a globally convergent modification of Newton's method. The linear systems
are solved by 3D multigrid routines.

I. Introduction

Computational algorithms to resolve the nonlinearities in numerical drift-diffusion model-
ing such as Newton's or Gummel's method generally require a reasonably accurate initial
guess. The charge neutral approximation provides one possible option that is obtained
with little computational effort. An alternative approximate solution is provided by the
depletion approximation, which tends to be presented in the context of analytical one-
dimensional modeling. In this paper we present numerical results obtained with a novel
computational multi-dimensional implementation of the depletion approximation.
If q is the size of the electron charge, T the ambient temperature, and kB Boltzmann's
constant, then the thermal potential UT = (kBT)/q. The intrinsic Debije length AD,. is

then equal to AD,i = V/(eokBT)/(q2ni). We express length in terms of an arbitrary unit
10. The nonlinear Poisson equation, in terms of the electrostatic potential u (in units of
the thermal UT) and the quasi-Fermi levels v and w, is then given by

_ eL e - w-u - ki] = 0.

In thermal equilibrium the quasi-Fermi levels v and w may be set equal to the constant

value 0. In the charge-neutral approximation the potential function u is set equal to

U, = sinh-'(k1 /2). (2)

However, it is obvious that the charge neutral approximation u% is significantly less
accurate as an estimate to the solution u to Eq. (1) if v and w vary significantly, reflecting
applied bias potentials. The charge-neutral approximation will be particularly inaccurate
in modeling the depletion around reverse biased p-n junctions.
Our algorithm to compute the multi-dimensional depletion approximation employs a mod-
ification of the nonlinear Poisson equation (1) in which we attempt to reduce mobile charge
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densities to 0 where the solution is furthest from thermodynamic equilibrium. The mod-

ified Poiuon equation is given by

- Vfu**"+ - - ki] = 0 (3)

where u&. is the potential distribution which accounts for all depletion, v. and w.,
are the piece-wise constant quasi-Fermi levels, ut. is the thermal equilibrium potential
distribution, and vt. is the quasi-Fermi level in thermal equilibrium (which is :.ero). The
nonlinearities are resolved with Newton's method and the linear systems are solved with
three-dimensional multigrid routines developed by the second author [1]. Special care
was taken to keep the linear systems well-conditioned. First, we solve Eq. (1) without
externally applied bias for ut.. Then the externally applied biases are applied at the
contacts. The quasi-Fermi levels are adjusted in a piece-wise constant manner in each
doping region to match the applied bias for the contact on that region. Then Eq. (3) is
solved for the complete depletion.

IL Numerical Software

The linear multilevel method at the core of the software, as described in [1, 2], allows
for discontinuous coefficients as occur in material interface problems. Operator-induced
prolongation procedures are used to enforce flux conservation at box boundaries when
a mesh function is interpolated from a coarse to a fine mesh. Smoothing operators are
Red/Black Gauss-Seidel and weighted Jacobi, whereas the coarse mesh problem is solved
with conjugate gradient methods. Nonlinear problems are handled with an extremely
robust globally convergent damped-inexact-Newton-multilevel solver based on fast linear
multilevel methods for the inexact Jacobian system solves. A nonlinear prolongation
operator has been employed for nested Newton iteration. The discretization is with the
box method.
To handle the severe numerical problems occurring with nonlinearities of exponential-type
present in the semiconductor equations, we developed argument-capping functions which
avoid nonvectorizable statements. Calls to the standard intrinsic functions are replaced
by these modified functions, and overflows are successfully avoided during early transient
iterations without loosing the execution efficiency of the intrinsic functions. Due to the
various choices made during the development of this package, the software executes at
very high rates on a number of modem computers; see for example [1, 2] for benchmarks.

HI. Numerical Results

In the following pages, we show the initial charge neutral, Fig. 1, the thermal equilibrium,
Fig. 2, and the final depleted, Fig. 3, electron depletion for a three-dimensional BJT
model. The computational grid was 49 x 49 x 25 yielding a total of 60,025 unknowns.
The computation of the our depletion model took 48 seconds on a HP 735 workstation,
demonstrating the considerable computational efficiency of the multigrid routines.
Figures 1, 2, and 3 show two cut planes, one on the top on the of the device and one
down the middle. The emitter is near the center, but slightly to the left, the base contact
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Table 1: Timing and Iteration Statistics

Grid Size Number Solution Newton Iterations Newton Iterations
of Points Time Thermal Equil. Applied Bias

25 x 25 x 25 15,625 15.02 5 6
25 x 25 x 33 20,625 20.04 5 6
33 x 33 x 33 35,937 40.16 5 7
49 x 49 x 33 79,233 103.07 6 7
49 x 49 x 49 117, 649 152.23 6 7

is to the right of the emitter, and the collector contact is near the right edge. The lighter
areas of the planes, representing lower electron densities (:5 5 x 101'cm-), are the parts
of the base and collector which have been depleted of electrons.
The device simulated is a BJT built in an area of I pm x 1 m which is 0.5 Am deep. The
device has a realistic doping profile [3, 4]. The background n-doping of 1017 cn- 3 forms
the collector. The base has a 0.46 pm x 0.50 pm surface area and a depth of 0.15 Am with
a p-type doping of 101 cm-3 . The n-type emitter, which is doped at 101 Ocm-3, has a
0.08 pm x 0.13pm area and a depth of 0.04 pm. This base width corresponds closely
to [5].
The Debije length is given by [6], LD = V(eCokBT)/(q 2 NB), where NB is the doping
concentration on the more lightly doped side of an abrupt junction. The Debije length of
the emitter-base junction in this device is 4.1 nm and 13 nm for the collector-base junction.
The depletion width of a junction is given by [6] W = LDj/2[q(Vti - V.w)/(kBT) - 2],
where Vu is the builtin voltage and Vp, is the applied bias. The emitter-base junction
has a depletion width of 0.036psm. The collector-base junction is 0.10Ipm when no bias
is applied and 0.22#m when VE = VB = OV and VC = 3.OV.
The metallurgical junction width from the bottom of the emitter to the bottom of the
base region is 0.103 pm. The calculated electron depletion region (the base width plus
the collector-base depletion, which is assumed to take place entirely in the collector) i.
0.208 pm for the zero bias case while it is 0.327 pm for the biased case. Using a threshold
of a factor of two less than the doped concentration as the edge of the depletion region,
the results from the thermal equilibrium solution gave an electron depletion region of
0.195pm while the depletion calculation gave 0.303pum. These compare favorably to
the analytically calculated results; however, agreement will not be exact due to three
dimensional effects and the error in assuming all of the depletion occurs on the more
lightly doped side of the junction.
The width of the undepleted base decreased from 0.103 pm in the charge neutral case
to 0.072 Am at thermal equilibrium. When the final depletion correction including the
bias was added, the base width was 0.059 pm. These results are similar to experimental
measurements [7].
The comparison of the charge-neutral approximation u,. and the multi-dimensional de-
pletion approximation u&, demonstrates clearly the superiority of the computational de-
pletion approximation. The strong rounding of the electron depletion region in our device
with an exactly rectangular doping profile, demonstrates the need for a 3-D calculation.
Table I reflects the linear computational complexity of the calculation.
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Figure 1: Charge neutral solution. The light area of both planes is the base region while
the exterior dark region is the collector and the interior dark region is the emitter. This is
the same orientation as the above figure: looking up from slightly below the device. The
contacts are on the top plane.

References

[I] Michael Holst. Multilevel Methods for the Poisson-Boltzmann Equation. PhD thesis,
Numerical Computing Group, Department of Computer Science, University of Illinois
at Urbana-Champaign, 1993.

[2] Michael Holst and Faisal Saied. Multigrid solution of the Poisson-Boltzmann equation.
Journal of Computational Chemistry, 14(1):105-113, 1993.

[3] Richard S. Muller and Theodore I. Kamins. Device Electronics for Integrated Circuits.
John Wiley and Sons, New York, second edition, 1986.

[4] S. M. Sze, editor. High-speed Semiconductor Devices. Wiley-Interscience, New York,
1990.

[5] D. D. Tang and Paul M. Solomon. Bipolar Transistor Design for Optimized Power-
Delay Logic Circuits. IEEE Journal of Solid-State Circuits, SC-14(4):679--684, Aug
1979.

[6] S.M. Sze. Physics of Semiconductor Devices. Wiley-Interscience, New York, second
edition, 1981.

[7] Joachim N. Burghartz, Jack Yuan-Chen Sun, Carol L. Stanis, Siegfried R. Mader, and
James D. Warnock. Identification of Perimeter Depletion and Emitter Plug Effects in
Deep-Submicrometer, Shallow-Junction Polysilicon Emitter Bipolar Transistors. IEEE
Transactions on Electron Devices, 39(6):1477-1489, Jun 1992.

73

U U U U U



Figure 2: Thermali equilibrium solution. The lghter area is the region of the base Whichis not depleted in the thermial q, 'nThlitearas
aee eerM T e ve is I rn on a side.

Figure 3: Depletion approximatn solution The small light area i
of the base When the contact Potential is applieds
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An Accurate and Efficient Nethod to Characterise

Heterostructure Devices

All Ahou-Elnour and Klaus Schuenemann

Technische Universitaet Hamburg-Harburg

Postfach 90 10 52, D-2100 Hamburg 90, Germany

Abstract
Electronic states inside heterostructure devices are obtained by solving
Poisson's and Schroedinger's equation self-consistently. Schroedinger's

equation is efficiently solved by using variational techniques to obtain
the wave functions in terms of a number of expansion functions. The
present method is used to characterize the operation of single-well and
pseudomorphic heterostructures, to characterize quantum wire devices, to
calculate the two-dimensional scattering rates, and in Monte-Carlo codes.

I Introduction

The physical phenomena which are taking place in ultra-small and highly
doped heterostructure devices require accurate physical models to
characterize device operation and to optimize the structures. The main
difficulty is that the behavior in the two dimensional electron gas (211G)
region depends in a complicated manner on the device geometry and on bias
conditions. The self-consistent solution of Poisson's and Schroedinger's
equations is one of the most accurate models which is used to characterize
heterostructure semiconductors to overcome these difficulties [1,2].

Previous self-consistent calculations generally used the finite difference
technique to solve Schroedinger's equation [3-5]. The mesh size and the
discretization method deteriorated the accuracy of the obtained results.
We have recently introduced an efficient method to solve Schroedinger's
equation by using variational techniques [6]. In the present work, we
apply this method to characterize different heterostructure devices.

II Modeling

The effective mass, one-dimensional Schroedinger equation is given by

- (th2/ 2 m ) (0 2 (x)/,& x ) + V(x) W L.(x) = E L W (x) 1)

where V(x) means potential energy, I. i genenergy, W (x) wave function
corresponding to the eigenenergy I., a effective mass, and h Planck's
constant. For a semiconductor structure of width a, the wave functions
can be expanded as
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If N in infinite, the obtained wave functions are identical with the true
ones. However, a finite N still leads to very good accuracy. The
coefficients a k , the eigenenergies, and the corresponding wave functions
are determine by solving the matrix equation resulting from the
variational integral for K. [61.

III Application

The previous method is applied to characterize a modulation doped
structures by solving Poisson'sB and Schroedinger's equations self-
consistently. The 2DEG density, the energy levels, the wave functions, and
the transconductance are displayed versus the total gate voltage in figs.
1,2,3, and 4 respectively. The total gate voltage represents the sum of
the applied external voltage and the Schottky barrier equivalent voltage.
Good qualitative agreement between the calculated results and those from
both experiments and Monte-Carlo calculations [7] is obtained.
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Quantum wire structures, shown in fig. 5, can also be characterized by
solving Schroedinger's equation in two dimensions using Rayleigh-Ritz
method to obtain the two-dimensional wave functions (fig.6). The present
method has the advantageous that it requires resonable CPU time. it is
straight forward, and it overcomes the limitations of previous models

arising from mesh size and discretization.

(a) (b)

Wigs- first two wave funactions for the structure in fig.5 tmine 10 expan-

sion function (figS.) and 20 ezpmnwion functions (fig.6b) In sash direction.

IV Calculation of the two-dimensional scattering rates

The two-dimensional scattering rates are calculated by defining the matrix
element for scattering between the ith and the jth subbands according to

IN Li12 f. I (Q'q) 12 1 1 (q) 12 dq(3)
where Q, q are the phonon wave-vector components parallel and normal to
the hetero- interface, and I ,(q) means overlap integral

1j(q) =f W (x) W' Wx exp(iqx) dx .(4)

Wi(x) is the normalized envelope wavefunction. Both Rayleigh-Ritz and
finite difference methods are applied to calculate the subband energies
and the corresponding wavefunct ions of an AIGaAs/GaAs heterostructure.
Using Rayleigh-Ritz method, the required C-PU time (fig. 7b) to calculate
the 2D scattering rates (fig.8) versus the number of subbands is nearly
constant while it greatly changes using the finite difference method
(fig.7a). This makes the application of the present method more practical
in particular for device simulation.
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V Nonte-Carlo simulation of Betero-FETs

A two-dimensional Monte-Carlo code is investigated to simulate the

hetero-FRT structure shown in fig.9. Poisson's and Schroedinger's

equations are sovled self consistently along the device and the obtained

results are used to express the conduction band by a number of step

functions. The wave functions and equivalent energy wells at different

sections along the channel are displayed in fig. 10.
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TSe premt model takes the mile qmmtisation into account • e the
electrons which have emergiem lmm than the barrier height •m only move
in two dimensions. Moreover, the transfer between the different regions is

simpler than in other models because no extra scattering rates are
required to he derived. Our model leads to a higher carrier concentration
in the channel region than the classical models, fig. 11, because the
carrier capture in the 2Dl• region is better simulated.

VI Conclusions

An efficient computational tool is used to determine the electronic states
inside heterostructure. The present model overcomes the limitations of the
previous models which arise from mesh size and discretization. The closed

fores of the wave functions makes the calculations of the two-disensional
scattering rates easier. This method can also be efficiently used together
with Monte-Carlo codes to characterize semiconductor devices.
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A New, Easy-to-Code, Robust and Stable Approach
to 2-D Hydrodynamic Submicron Device Modeling

Qi Lin, Neil Goldsman and Gwo-Chung Tai
Department of Electrical Engineering

University of Maryland
College Park, MD, 20742

I. Introduction

We present a new technique for solving the Hydrodynamic(HD) equations in submi-
cron device simulations. This method is extremely stable, quickly converges even with
poor initial guesses, and agrees with Monte Carlo(MC) calculations. In addition, this
new method is easy to code for 2-D device simulation. We have applied the new method
to simulate 2-D MOSFETs as well as SOl devices.

To our knowledge, no agreed-upon HD model has emerged as the basis for a stan-
dard device simulator. The lack of an industry-standard CAD tool can be attributed
to the difficulties in obtaining an accurate, numerically stable, and rapidly convergent
solution to the HD equations. We have developed a new robust algorithm for HD device
simulation that overcomes exi7ing difficulties. We formulate the HD equations into self-
adjoint forms with a new set oý Slotboom-like state variables. The discretizations result
in a diagonally dominant coefficient matrix for each HD equation. Consequently, the
convergence of each equation is guaranteed for any initial guess when iterative solution
methods are employed. Our discretization technique resolves the rapid spatial variations
which may occur in carrier densities and carrier temperatures. As a result, stability of
the HD solution is improved. Furthermore, a fixed-point iterative method is employed
to determine the solution of each discretized HD equation. A direct solution of a matrix
equation is therefore avoided. In addition, the method requires little memory, and is
well-suited for parallel computations.

II. The HD Model

The HD equations are obtained from a standard HD formulation [1].

V'2 4 = -(n - p - D) (1)

V-Y. = R (2)
q

-7f, -,. E- wnwo(3)

f, qn• k+q,,• ,kn• , (4)
(T(5)

,S, = Wn + AýkBTn + (in (5)

-q -q
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2k 1 ° 2
2 -k8 T, + I-m,*v 2 (6)3 2 d

,n= -X,, c T, cn =- 2T,(kB/q)2 (nqp,) (7)

Here, 4) is the electric potential; n and p are the electron and hole densities
respectively; D is the net doping concentration; J, is the electron current
density; R denotes the recombination process; w•, is the average electron en-
ergy and §n is the electron energy flux; E is the electric field; -T,,, is the
energy relaxation time for electrons; w. is the average carrier energy in ther-
mal equilibrium; An is the electron-temperature-dependent mobility; Dn is
electron temperature-dependent diffusivity; T, is the electron temperature;
mn* is electron effective mass; vdn is the electron mean velocity; Q is the heat
flux. (We note that, in an effort to be concise, only the HD equations for
electrons were shown. However, our calculations include the self-consistent

solution of the hole and electron HD equations.)

The typical approach at this point is to solve the above system of equations by using
n, Tn as the unknown state variables. However, the current- continuity and the energy-
balance equations under this approach may give rise to numerical difficulties such as
stability problems and spurious spikes in average electron velocity. To overcome these
numerical problems, we take another approach by first defining a new set of Slotboom-like
state variables. Then, we transform the HD equations into self-adjoint forms with these
new variables. A new Scharfetter-Gummel-like discretization scheme is then employed to
resolve the rapid variations in n and Tn. The resulting matrix equations are diagonally

dominant and exhibit excellent numerical properties.

flI. The New Method for Solving HD Equations

A. Slotboom-Like Variables for the HD Model
We define a new set of Slotboom-like state variables u and gn for electron density and

electron temperature:

n = ni exp( T T kTL+( -O -)) niuexp(Tn-TL+ k ) (8)

u = exp kyTL (9)

_ _ 4 kBTL
Tn = g. exp(,bb/aT), aT= = 0.0207V (10)

ATnnkB 5 q

where P, is the electron quasi-Fermi potential and TL is the lattice temperature.

B. The Self-Adjoint form of the HD model

Substituting eqns. (8)(9) into (4), and eqn. (10) into (5) respectively, the electron
current density and electron energy flux in terms of the Slotboom-like variables u and g.
are as follows:
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- 131
S+ Jn, (1I M.V

S x= exp(O,/aT) V g.  -() (12)
-q 2

Eqn. (11) can be further simplified to fJ = -qpn V 0,,. The steady state HD model
can now be described by a system of self-adjoint equations. This system can be obtained
by appropriately substituting eqns. (11)-(12) into eqns. (1)-(3).

2 qn, T,- TL q+ 6 T,- TL q'k ) qD
Vu 4-Iuexp(- + _L___v exp( (13)

, k TL kB-TL• TL kBTLn

-TL q-
i +Tp-- + vu =R(O,u,v) (14)

TL kB TL

S(x. exp(bn/aT) V9 3 ) =

nkBg9exp(t?/b 3 aT) + jM" -- - v" (-'mdvn) (15)

It is clear from the above expressions that the Poisson, the current-continuity and the
energy-balance equations are each self-adjoint differential equations with respect to the
variables 4?, u and g-. It is also interesting to note that when Tn is equal to TL, the
above new expressions for the Poisson and current continuity equations reduce to the
DD model[2].

C. Discretization Scheme and Iterative Method for HD Equations
A Scharfetter-Gummel-like method is employed to discretize the current-continuity

equations and the energy-balance equations. The discretizations result in a diagonally
dominant coefficient matrix for each HD equation. A fixed-point method is applied to
solve the system of discretized HD equations. Due to the property of diagonal dominance,
the convergence for the solution of each HD equation is guaranteed [2,3].

IV. Numerical Results

To test convergence of the technique, we generated initial guesses using a random
function. With random initial guesses, the same results were obtained as when good
initial guesses were used. To examine stability, we simulated MOSFET's on a rather
coarse grid of less than 400 mesh-points and smooth results were obtained. Additionally,
we found that, in general, our HD simulations required only about 75% more CPU
time than drift-diffusion model simulations. Fig. 1 shows the simulation results for a
submicron MOSFET with 0.5mrn channel length. In Fig. 2, we show the results of a
computation performed for a lsm-channel SO device. Finally, to test the accuracy of
the new HD model, we compared our simulations to MC calculations for a square shape
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field. Fig. 3 shows good agreerr nt between MC simulations and our HD calculations.
Also interesting in Fig. 3 is that the spurious second overshoot spike, which usually
appears in HD simulations, is absent from our calculations.
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Figure 1. 2-D Submicron MOSFET Simulation Results
(Vgs = 3V, Vds = 3V, Channel Length = 0.Sm)
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An Equivalent Circuit Model and Distribution-Function Theory
of the Hgb-Frequency Behavior of Quantum-Based Devices

F. A. Buot and A. K. Raiagopal
Naval Research Labatory
Washington, D.C. 20375

Abstraet
The high-frequency response of resonant tunneling devices (RID), subjected to time-dependent
signal, is considered in both stable and unstable situations when operating in the negative
difterential resistance (NDR) region, based on the phase-space distribution function formalism.
In the stable case, the equivalent-circuit approach (ECA) is shown to characterize the complex
high-frequency behavior of a RTD's response to small a.c. s•-g•r,. The ECA is found to be very
useful in resolving the various outstanding controversies concerning the dynamical quantum
transport behavior of RTD. For the unstable case, nonperturbative approaches are outlined.

I. Introduction

There is much confusion in the literature concerning the high-frequency behavior of resonant
tunneling devices (RTD). The numerical simulation of Frensley [1], using the Wigner distribution-
function twasport equation (WDFTEQ), reveals a capacitive behavior at lower frequencies,
eventually changing into an inductive behavior at higher frequencies. In contrast, the numerical
simulation of Kluksdahl, et al. [2] using a similar WDFTEQ approach reveals an inductive
behavior at low frequencies, changing into a capacitive behavior at intermediate frequencies, and
eventually changing back into a (somewhat) inductive behavior at high frequencies. Both of these
simulations do agree concerning the real part of the admittance, namely, it is negative at lower
frequencies and becomes positive at high frequencies. Their results also concur at high frequencies
by having a cutoff in the admittance. Until now, the discrepancy in the reactive behavior cited
above has remained unresolved.

So far, there are no other serious work on the subject of characterizing the high-frequency
response of RTD to a.c. signal, although there have been a number of attempts to analyze the
high-frequency behavior of nanometric structures. These are attempts to extend the
Landauer-Bflttiker viewpoint, which calculates conductance from transmission coefficients, to
high frequencies. The gross deficiencies of all these attempts have been discussed by Landauer
[31. There are also attempts, for example by Fu and Dudley [4], which employ the machinery of
the linear response theory, however this particular approach is plagued by its inability to treat
far-from-equilibrium operating bias conditions, of interest to the nanoelectronics community.
More recent results of Cai and Lax [5] employ a nonperturbative time-dependent Green's function
approach to compute the behavior of an electron incident from an energy channel on a double-
barrier structure. Their results reveal the presence of intrinsic oscillations in response to a voltage
pulse across the negative differential resistance (NDR) region, similar to the result obtained by
Buot and Jensen [6], particularly when self-consistency was switched off in their WDFTEQ
calculations. The results of Cai and Lax are however limited to single-channel and
nonselfconsistent contributions.
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The purpose of this paper is twofold: to show that a coherem and unified unerstandin of the
high-frequency behavior of RTD arins from the equivalent-circuit model of Buot and Jensen (11)
[7], to be referred here as the BJ model (originally proposed to study the nonlinear aspects of
RTD which arises from the selfconsistent treaunent of WDFTEQ), and to point out a proper way
to a nonperturbative theoretical framework for analyzing the high-frequency behavior of resonant
tunneling devices within the quantum distribution-finction approach. It is worthwhile to stress the
first point here since there have been misleading statements in the literature claiming that no
understanding exists for quantum transport at nonzero frequencies. Also there is a need to clarify
a statement made in the literature which strongly implies that no LRC circuitry can simulate the
complicated frequency dependence of the admittance in the linear-response regime, particularly
since this statement is made without further reservations. We will here show that indeed the two
earlier numerical simulations mentioned above [1,2] may be recast in terms of the BJ model in
two separate regimes in the Ri circuit parametrization, operating in the NDR region. Thus, the
BJ model is found to include the high-frequency behavior of RTD.

!1. Equivalent-Circuit Model

The BJ model is derived from the selfconsistent quantum distribution-function (QDF) transport
simulation, with four independent equivalent-circuit parameters, namely, series resistance, R,
negative conductance, G, quantum inductance, L, and capacitance, C. The RTD simulated by Wi,
with fixed bias applied in the NDR, is characterized by the following inequalities for the circuit
parameters: R IGI > 1 and RC > LIGI. These are conditions for the presence of oscillatory
behavior and instability of the operating point in the middle of the NDR region [7] leading to the
intrinsic bistability and hysteresis in the current-voltage characteristics,which was the focus of the
original Bi model. In contrast, we now find that the RTD simulated by Frensley [1] and
Kluksdahl, et al. [2] are obtained if the following inequalities are obeyed: R I G I < 1, and RC
< L G I, along with further conditions to be specified in what follows.The above are conditions
for the nonoscillatory and stable operation in the middle of the NDR region allowing for the
applicability of linear-response approximation [8]. They also imply that the series resistance is
quite small compared to that of the RTD simulated by BJ (note that the RTD simulated by BJ,
although having approximately the same feature sizes for the double-barrier region, differs in
having an undoped buffer layer on both sides of the double barrier, which may also affect the
value of the capacitance relative to those of Refs. [1] and [2], and a longer computational box
length, which together introduces a larger R). Moreover, the RTD simulated by Frensley [1],
without taking self-consistency into account, differs from that simulated by Kluksdahl et al. [21,
which takes self-consistency into account, by the following inequality: LIGI < C/IGI for
Frensley [1], whereas LIGI > C/IGI for Kluksdahl et al [2]. These imply a larger quantum
inductance for the RTD of Ref. [2] as compared to that simulated in Ref. [1], where the residual
small inductance is mainly due to the quantum nonlocality [8]. Further, note that Ref. [2] uses
wider barrier widths than those used in Refs. [1] and [7]. Thus the BJ circuit model serves not
only to clarify the origin of the discrepancy of the results of the two numerical simulations [1,2],
but also to bring together the various dynamical aspects of RTD in terms of WDFTEQ.

In addition to the quantum inductance, in parallel with the capacitance, found by BJ for fixed bias
in the NDR region, it is important to take also into account effects arising from the electron
kinetics in calculating the RTD response to high-frequency a.c. signal. These effects are often
referred to as due to the electron inertia, i.e., it takes time for the electron to be accelerated and
decelerated, typically causing the current to lag in time behind the electric field. These inertial
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efhcts, although always present, are negligible at low frequencies. It is taken into account in our
high-frequency equivalent circuit model of RID by adding another inductance, t, (t is typically
an order-of-magnitude smaller than the quantum inductance, L) in series with R, outside of the
two-branch circuit of L, G, and C. As will be shown in the following figures, this additional
"inertial inductance, t, serves to cut off the RTD response at very high frequencies.

We have calculated the admittance of RTD to a small a.c. signal using the above-mentioned high-
frequency equivalent circuit model. The different circuit parameters are estimated by adjusting
the values obtained by BJ to conform with the constraints enumerated above appropriate to the
different RTD simulated. The results are displayed in Fig. I for the RID parameters appropriate
to the device simulated by Frensley [11, and Fig. 2 for the RTD paamneters appropriate to the
device simulated by Kluksdahl et al. [2] (note that the inductive part of the admittance is plotted
with a positive scale in Ref. [21). Observe that the characteristic features of the results of their
numerical simulations, mentioned at the beginning, are well reproduced by the present results,
obtained simply by using the high-frequency equivaient-circuit model. Indeed, these results lend
further support to the accuracy of the BJ equivalent-circuit model of RTD at low frequencies [71,
as well as confirm the validity of the present high-frequency equivalent circuit model of RTD
which incorporates a series-inertial inductance. These results also serve to invalidate the claim [4]
made without any reservation, that no LRC circuit can simulate the complicated frequency
dependence of the admittance in the linear-response regime.

HI. Nonapeturbative Approaches for Unstable NDR Operation

For unstable operation in the NDR region, nonperturbative approaches are more appropriate.
Here, a new time-dependent transformation of phase space is found which transform the quantum
distribution (QDF) transport equation to the same form in the absence of time-dependent signal.
This is shown to be a very powerful approach in revealing the nature of the nonperturbative
response to a small a.c. signal. This time-dependent transformation is useful when the applied
time-dependent electric field is assumed to be position-independent. The general formulation of
the QDF transport equation in the presence of space and time-dependent potential is given by one
of the authors [6,91. For high-frequency signals applied at the drain terminal of an RTD,
following the conventional procedure, we assume a time-dependent but position-independent
applied perturbing field within the device. From the general formula given in Refs. [6,91, one
arrives at a resulting QDF transport equation in response to this signal. We show that the
resulting QDF transport equation can be transformed into the form of the equation obtained earlier
in the absence of the perturbing time-dependent field, through a time-dependent transformation
of the phase-space. This transformation of the equation however makes the double-barrier
potential to be time-dependent. With this simplification, the application of the numerical technique
of Ref. [6] with known time-dependent matrix for the double-barrier potential operator, with time
as a parameter, becomes feasible. The derivation of the transformed and simplified new QDF
transport equation, and the method of the numerical implementation for calculating the
nonperturative response to an a.c. signal will be discussed in a forthcoming paper.

In a more general and realistic situation, an applied time-dependent voltage at the drain will
selfconsistently lead to a time-dependent and position-dependent potent.al inside the device. For
this general situation of the unstable case, a nonperturbative approach based on the structure of
phase space is proposed. We introduce two different representations of quantum transport,
namely, the Liouville representation, and, the phase-space fluid representation. The QDF is
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solved minerically in the same fashion as described and successfully implemented in the existing
literaure, but using tmedependent bias. The QDF solution has inherent undesirable features for
studying the dynamics of phase space, which can be eliminated by a special post-processing. This
post-processing yields a smoothed-out QDF, the positive definite Husimi distribution, and allow
us to study the structure of quantum trajectories in phase space. It is suggested that the use of
Husimi distribution enables a microscopic dynamical viewpoint of ECA as well as shed further
light on the dynamical nature of the quantum inductance. The full details of this approach will
be discussed in another paper.

IV. CoAncluding Rmaks

In conclusion, the utility of the QDF approach for unddi the high-frequency behavior of
quantum-based devices and Ln deducing the equivalent circuit ,,4el of RTD 'have been
demonstrated here. It is worthwhile to reiterate that the equivalent circuit model of RTD is subtle
and in the form presented here elucidates the two earlier simulations [1,2] as special cases of the
model presented here. Thus the discrepancy in the simulated reactive behavior mentioned in the
opening paragraph is resolved. Moreover, the exact role of electron inertia in the high-frequency
behavior of RTD is clarified. For cases when the linear response approximation breaks down,
nonperturbative schemes are outlined.
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Device simulation by means of a direct solution of the coupled

Poisson/Boltzmann Transport enuations

Conor J. Donnelly and Colin Lyden

National Microelectronics Research Centre,
University College, Cork, Ireland

Abstract

A method for directly solving the coupled Poisson/Boltzmann Transport equation including a
new model for the collision term is presented. This method yields the complete momentum
distribution function from which all quantities of interest to the device modeller can easily be
calculated. Current continuity is implicit in the model. The method is demonstrated by simu-
lating an n+-n-n+ silicon structure.

I Introduction

With decreasing device dimensions there is a need to accurately model the effects of hot carri-
ers. Solutions of the drift-diffusion and hydrodynamic models have been widely used to model
the behaviour of many submicron devices [1). However, in the analysis of the programming
of EPROMs [2] and many other phenomena found in modem small geometry devices, the
complete carrier distribution function in both ordinary space and momentum space is required
for accurate simulation. Recently there has been increased interest in solving the Boltzmann
Transport Equation (BTE) to obtain the distribution function [3, 4). Knowing the distribution
function and electric potential, all other quantities of interest can be calculated. In this paper a
method for solving the coupled Poisson/Boltzmann Transport equations is presented.

iH Mathenmtical model

The BTE for steady state conditions for a semiconductor device is

( 7f- "- (gi. I kf
) COLL

where V is the carrier velocity, i is the electric field and f is the distribution function. The right
hand side of equation 1 is the collision term and is often approximated using the relaxation time
approximation [5] as

(!Lf ) ~ f-fo (2)
& COLL

where fo is the distribution function at equilibrium and r is the relaxation time. Integrating
equation I over momentum gives the current continuity equation in the abscence of generation-
recombination. However, if the relaxation time approximation is used the integral of the collision
term over momentum is, in general, not equal to zero because the electron concentration differs
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from equilibrium to non-equilibrium conditions. Thus the relaxation time approximation does
not satisfy the condition of current continuity, and is therefore invalid for non-equilibrium
conditions.

A new approximation is made to the collision term of the BTE

( COLL -(

fg(j)dj = 4W3 (4)

where g(k) is a Gaussian function in kandn is the carrier concentration. The carrier concentration
is given by

= fdi (5)

If r is a function of ordinary space only, then the integral of equation 3 over momentum
space is always equal to zero. Therefore this approximation always satisfies the condition of
current continuity. Close to equilibrium the new approximation approaches the relaxation time
approximation because

at equilibrium.

Ill Discretization in one spatial and one momentum dimension

The discretization of the governing equations in all three spatial and three momentum dimen-
sions would lead to a very large system of equations to be solved simultaneously. Therefore
only one spatial and one momentum dimension are included. Poisson's equation is discretized
in one spatial dimension using finite differences. The BTE is discretized in one spatial and one
momentum dimension using finite differences, the gradients being approximated using central
differences. With just one spatial and one momentum dimension it is assumed that the distri-
bution of carriers in the other two momentum dimensions is the same as at equilibrium and
that collisions only scatter carriers forwards or backwards in that one momentum dimension.
The velocity is modelled on a parabolic band strucure. For simplicity the BTE and Poisson's
equation are solved using Gummel's method [5] subject to appropriate boundary conditions.

IV Boundary conditions

The contacts are taken to be Ohmic. The potential at the contacts is set equal to the sum of the
applied voltage and the built in potential. For the BTE a Dirichlet boundary condition is imposed
at the extremities of momentum and a natural boundary condition is applied at the contacts. At
the maximum and minimum values of momentum, the distribution function is set equal to the
equilibrium distribution function. At the contacts the gradient of the distribution function is set
equal to zero assuming there is a neutral space charge region close to the contacts.
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V Raults

The model is applied to simulating the operation of a lightly doped n+-n-n+ diode. The n+-n-n+
diode has an overall length of 10 microns with the outer 2.5 microns at each side doped at 1014

cm- 3. The 5 micron region in the centre is doped at 1013 cm- 3. The contact at the right is
grounded and a bias is applied to the left contact Figure I shows the potential distribution across
the device for an applied bias of 400 mV. Figure 2 shows the electron concentration under the
same conditions. The distribution function at the right contact is shown in figure 3 along with
the distribution function where the carrier concentration is lowest (3.5 jim from the left con-
tact). The greater displacement from equilibrium of the distribution function where the carrier

600 -,

400 \

200 - - - - - - - -

0 2 4 6 8 10
x(p)m)

jigure 1: Electric potential (•) for a bias of 400 mV applied to the left contact.

13lxlO VT

8xIO12

6xlO122 12

4xlO ---

122x10 ,-- ..--

0 2 4 6 8 10

x ()Im)

Figure 2: Electron concentration for a bias of 400 mV applied to the left contact
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,Figure 3: Shape of distribution function

concentration is lower corresponds to a greater average energy of the carriers towards the centre
of the device. Figure 4 shows the average energy of electrons at 300K across the device. Note
that the carriers a distance 2.5 microns from the right contact (barrier region) have an average
energy lower than the lattice thermal energy, a phenomenon which occurs when carrier diffusion
is in the same direction as the external force on the carriers [6]. Current continuity is implicit in
the model and is observed for all applied biases. Current density in the device is easily calcu-
lated from the momentum distribution function. The current density versus applied bias for this
structure is shown in figure 5. This result is identical to that predicted by the drift diffusion model.
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Highly Efficient Simulation of HEMTs and MESfETs Based on Quantum

ILK. Veresegyhazy and C.M. Snowden
Department of Electronic and Electrical Engineering
University of Leeds
Leeds, LS2 9JT. UK

Abstrct

A new, quasi-two-dimensional physical device model was developed which allows the DC
small- and large-signal microwave characteristics of HEMTs and MESFETs to be obtained
based on device geometry and process data. It is easily applied to a wide variety of HEMT
structures including pHEMT, AIGaAs/GaAs and multichannel structures.

L Introduction

Field effect transistor physical models can be used in several electronic engineering areas,
including device and circuit design. Analytical models, due to there simplicity, can not
reliably predict device performance whereas two dimensional models (both hydrodynamic and
Monte Carlo) are certainly predictive and usually accurate, but computationally very
demanding. Quasi-two-dimensional (Q2D) modelling offers a good compromise as it is up to
1000 times faster than full-two-dimensional modelling and still reasonably accurate. In
practice I-V characteristics and microwave S parameters can be obtained in a few minutes on
a personal computer with a 80486 processor. Our program can also determine simultaneously
the elements of non-linear quasi-static equivalent circuit model. S parameters are calculated
using a time-domain version of the physical model.

The Q2D approach is based upon the fact that the equipotential lines in the active channel
(i.e. outside the depleted region) of a HEMT or MESFET are fairly parallel, perpendicular to
the free surface. Therefore the analysis of the device can be subdivided into establishing the
charge control law by the gate in the direction perpendicular to the gate (y direction) and
calculating the current transport in the direction parallel to the gate (x direction).

IL Csame Control Law

In the charge control model a vertical cross-section of the device is analysed (considered as
a Schottky-diode). The calculation of the sheet electron and ionised donor concentrations are
achieved by self-consistently solving Poisson's equation with Fermi statistics and the
Schr6dinger equation. Fast convergence can be achieved using Newton's algorithm. Up to nine
Eigen energies can be evaluated when solving the Schredinger equation though for practical
reasons usually only two or three are calculated, while the rest of the electrons are treated as
those belonging to the three-dimensional electron population. When the quantum well is not
very deep, as is often the case, it is possible to by-pow the quantum mechanical calculations
which makes the simulation even faster.
An advantage of this approach is accuracy and generality, as opposed to the triangular well
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or square well approximations, which usually contain an empirical fitting parameter in order
to improve accuracy [1].

At the end of calculations a look-up table is produced which contains the gate voltages and
the sheet electron and ionised donor concentrations in each epitaxial layer. In case of
pseudomorphic structures the effect of strain on the band gap, conduction band edge
discontinuity, dielectric constant and effective maw is calculated.

gate width: 1.0 mm 4
gate length: 0.3 pm
source gate distance: 1.0 pm
gate drain distance: 1.3 pm
layer structure:
AlGaAs(electron supplying layer): 30 nm, Al content: 200/e, donor concentration: 1.2xl0 2 m-3

AIGaAs (spacer layer): 3 nm, Al content: 20%, donor concentration: lxl020m"3

InGaAs (active layer): 18 nm, In content: 15%, donor concentration: lxl02°m-3

GaAs (buffer layer): 150 nm, donor concentration: lx10n2°m 3

Table 1.: The structure and properties of the simulated pHEMT device

For a pseudomorphic AlGaAs/InGaAs/GaAs HEMT (see Fig. 1. and Table 1) the conduction
band edge and the electron concentration is shown in Fig.2 and Fig.3 for zero gate bias. The
dependence of sheet electron and ionised donor concentration on the voltage applied to the
Schottky-diode is shown in Fig.4. It can be seen that at negative gate biases (close to pinch- 4
off) the sheet electron concentration is several orders of magnitude lower than in Fig.3..

source gate nd

i+ GaAs4.-nA as J

nI.2 Gas As

uuAeped 1nj.M ,W•

-.GaAs

GaAs SI *da

Figure 1. Structure of a typical pseudomorphic HEMT

The quanum mechanical calculations were not by-passed in the present simulation (in favour
of Fermi statistics), as it would have led to about 20% overestimation of the sheet electron
concentration in the InGaAs layer and 10% overestimation of the total sheet electron density.
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The transport equations are simplified versions of the firmt three moments of the Boltzmnann
equation, the particle (current continuity), momentum and energy conservation equations [2].
The terms describing the scattering of free electrons ame calculated baned on analytical fits to
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Monte Carlo simulation results [31. and me all considered to be the function of average
electron energy.
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Figure 4. Charge control law: sheet electron concentration and ionised donor concentration
in each layer

The sheet electron and ionised donor concentration is found from the alcoy', look-up table,

based on the difference of channel and gate (or surface) potential, with a correction arising
from the gradient of electric field in the x-direction. As this term can be quite large, especially
around the drain end of the gate, more accurate calculations should use a double subscripted
look-up table for the sheet charge densities to include the grad(E.) dependence. Due to the
large memory requirement this approach is more suitable for simulations running on
workstations than on PCs, therefore an analitic approximation was used in this work.

Unlike other recently published models, our model can simulate parasitic MESFET
conduction, allowing a more accurate representation of device operation. In fact, HEMT and
MESFET devices with an arbitrary number of different layers can be simulated.

The calculations at a specified source current proceed from source to drain using a simple
forward differencing scheme, after omitting the diffusion term in the momentum
conservation equation based on the considerations in [2]. The combination of Poissons's
equation and the transport equations yields a quadratic equation for the electric field or the
drift velocity. The drain voltage corresponds to the channel potential at the drain and is
obtained integrating the electric field along the channel (Fig.5). The I-V characteristics of
the pHEMT is shown in Fig.6.
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The future with computational electronics: a new golden age?

John R Barker

Nanoelectronics Research Centre
Department of Electronics and Electrical Engineering

University of Glasgow

Glasgow G12 8QQ, UK

Abstract
The advent of low cost high performance workstations and new visualisation tools is coincident

with a growth of new problems in electronics ranging from large scale power devices to
nanometer dimensions. The rise of molecular electronics and bioelectronics points to new

regimes for the device modeller to explore. It is argued that some software discipline especially

standards and portability is required if the modelling community is to be effective. Lessons may
be drawn from successes in other fields such as quantum chemistry and molecular modelling.

I. Introduction

Just seven years from the twenty-first century it is perhaps a good time to reflect on the future

of computational electronics. The modelling and simulation of solid-state devices is at an
important watershed in its history because for the first time it is possible to imagine universal

access to software and mathematical techniques which will allow any experimentalist, theorist,

industrialist, whatever, access to knowledge which was at one time the select speciality of a

few groups around the world. The changes are being brought about by the microelectronics

revolution which now provides the power of 1980s mainframes and early supercomputers in

relatively cheap workstations - with promises of more to come. There is a similar change in

software habits; in the last few years industrial employers of our engineering and science

graduates have begun to expect proficiency in languages such as C rather than the traditional

FORTRAN; and some nodding acquaintance is now expected with the concept of "user-

friendliness". It is no longer fashionable to log up hours of Cray time to produce a couple of

numbers. There are expectations aroused that something better is required. Explanations,

interpretations, insight, visualisation, projections are required quickly, graphically and easily.

Computer scientists are devoting time to topics such as persistent programming which

addresses the issues of 25 year old and older software. Computation is now one strand of more
complex activities; any computed data is to be regamled as part of a rich interacting hierarchy of
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knowledge which can be used by different people for different reasons. In computational

electronics we have only just begun to realise what these changes might entail and it is the

purpose of this paper to give a personal view of what we have to look forward to. I want to

start by first looking back to the beginnings of the subject(for me anyway) in the 1960s.

2. Some history

Coincidentally, it is also a quarter of a century since the first conference on computational

electronics held at the Culham laboratories in 1968. At that meeting were some of the first

papers on computational electron transport theory inclu'¼'ng one by myself and Cliff Hearn

which dealt with self-scattering in a Monte Carlo simulation of photo excited hot electrons and

which used propagator techniques to prove that the Monte Carlo solutions were equivalent to

solutions of the Boltzmann equation. At that time Culham was a centre for computational work,

mainly due to the intense interests in plasma physics and to a lesser extent neutron transport

theory. Culham provided an educational distribution point with series of weekly lectures on

computational physics organised by Potter. The smallness of the computers of those days made

the use of compact ingenious algorithms the order of the day rather than brute force number

crunching. It is not surprising that Potter went on to develop the Psion organisers and other

compact systems.

By 1969 much of the familiar theoretical base of computational electronics was already in place.

NET theory had been set up in 1947, Bipolar transistor theory by 1952, MOSFET theory by

1960, MESFETs in 1966. Of the computational techniques, drift-diffusion theories dated from
1952, hydrodynamic models from 1962, the Gumnmel algorithms from 1964 and the first solid

state electron transport theory handled by Monte Carlo was reported by Kurosawa in 1966(the

latter work was part of the inspiration that guided me into transport theory especially hot

electron theory in 1967). But many of these techniques were really derivative: Monte Carlo
studies were enjoying extensive use in neutron transport theory (although Lord Rayleigh was

doing much the same thing without computers in the last century); and the influence of
hydrodynamics (particularly driving the aerospace industries from WWII onwards) and plasma

physics cannot be under-estimated. There were already major forays into quantum kinetic
theories although these were still of a formal rather than practical nature.

What really limited practical applications was computing power. The really interesting (as well

as applicable)problems were either highly complex or non-linear or both. Looking back I am

still amazed by the lack of imagination we all had. "You are only limited by your imagination"

is the proud boast of many a computer advertisement in the 1990s. Well, my limit was a factor

between 3 and 10. In 1967 1 developed code (ALGOL 60) for simulating the time evolution of

Gunn domains and similar effects in photoconductors using an Elliot 803 computer with 32K
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core memory. A little later the offer of time on the national ATLAS computer at Harwell

brought the luxury of 90K memory but entailed a two day wait to receive the wad of data

(mainly error messages and core dumps) from the post. That extra factor of 3 in memory

seemed impressive, and every few years we in the computational sciences looked forward to

that extra factor of ten or so which would bring the biggest of problems into our control. It is

perhaps fortunate that the compute did not exist because the control and detailed understanding

of solid state device materials was not sufficent for realistic modelling. Not only was compute

power singularly poor, but means of handling the output data were primitive. In 1968 1 spent

maybe one week at a time collecting plotter pictures on large rolls, selective frames of which

were placed along a corridor to facilitate a "computer movie" of Gunn domain dynamics.

Today, that entire problem, including symbolic manipulation and computer movies can be

handled using Mathematica on a Macintosh computer in a few minutes. It is this simple

reminiscence which brings home the immense opportunities that we now have for unleashing

computational electronics from the grip of computational poverty. But others have been there

first: the computational chemists have achieved a close partnership with their industry which

has produced an effective, widely shared approach to applicable computational science which

we in computational electronics could learn from.

III. Physical modelling versus equivalent circuit

There has always been a division between those advocating the empirical approach to device

and particularly circuit modelling and those favouring the development of physical models. The

advantages and limitations of the two approaches are well known: industry, especially given the

exponential pace of integrated circuit technology, has needed data quickly and cost-effectively;

empirical or equivalent circuit models do the trick - in the short-term. But, that approach and a

poor investment in physical models led one well-known review paper in the late 1970s to state

that it was highly unlikely that silicon transistors could be manufactured with design rules less

than 10 microns. It is also true that physical models give the best route to device understanding

and to devising new device concepts - provided the underlying physical model is reliable. The

latter case is still a problem because we do not usually know how to model surface and

interface charge very readily. Indeed, the whole problem of physical modelling of real devices

is bound up with understanding and developing models of the underlying technological

processes.

The physical modellers have often dealt with the esoteric: the spate of quantum "devices"

investigated in the 1980s would have achieved short shrift with the empiricists had they

followed the literature. After all it is asumned that devices should be interconnectible, isolatable

and designed to function at room temperature not milli-degrees Kelvin. Again due to a certain
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innocent over-familiarity with the field many advocates of quantum devices fail to point out the
frequent necessity to use lock-in amplifiers in operating the devices. The real lesson here is not
that work on quantum devices is only of academic interest: it is that the science required to
achieve engineering goals is not necessarily the same science that drives the physical scientist to
investigate phenomena within devices. This problem did not arise with the quantum chemists.

Over the last 25 years the chemistry community has mutually developed molecular modelling,

drug design and molecular gaphics/design software which is not only relevant to science and

industry but mixes the empirical and physical to advantage; is also readily available and widely

used. My own interests in molecular electronics have led me to have a healthy respect for the
sheer accessibility of computational techniques and databases to the chemistry community.
There are distinct signs now that the physical modelling/empirical industrial rift is healing
within the electronics community. This is coming about partly because of better control and
understanding of real materials and the need to include "esoterics" in device design e.g. hot
electron effects. There are also questions of "attitude": we have all heard of the physical
scientists easy dismissal of engineering problems as containing no interesting physics. Often
this is misleading and in our own recent work (with Asenov and Brown) on applying
(technology transfer ?) microscopic device modelling techniques to large power transistors (200
A switches) we have developed considerable respect for the complexity and subtlety of the

underlying physical problem. More significantly, the immense complexity of realistic

quantitative as opposed to ualitative physical device simulation such as Laux's Monte Carlo
models of MOSFET devices is becoming manageable with the advent of very high power
workstations.

IV. Machine power I: workstations

Early next year my University will relinquish its three mainframes (including an IBM 3090
vector processor) in favour of a distributed system of workstations inter-connected by fast

networking. Other Universities here and abroad have already experienced this trauma - and

survived. The argument is compelling: why share a 126 Mbyte mainframe with 400 other
people when you can have a cheap 256 Mbyte workstation, with instant on-line colour graphics

for yourself. For a little more money one can expect to have 100 MFLOP workstations for use
within modelling groups over the next few years. If the dreams of modellers from the 1970s

are to be believed this already is extreme overkil for computational electronics problems. Of
course that is not the case, but it is the case that this development should lead to very much
closer links between academics and industry on grounds of cost alone.
There are questions of fashion however. There is still some cachet in using SUN

workstations. My own pedestrian approach is to use networked Apple Quadras running Unix,
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X-Windows and Mac environments(and even DOS!) concurrently, which at lower cost and
some performance penalties allows everyday word-processing, graphics, movie making, e-mail

and so on to be imtgratd with the normal workstation role. The catch of course is that the

system is linked to a large ta-sputer array for compute-intensive tasks. This example raises the

issues of hardware and operating system standards. My own solution is partly cost based

(more for less) and partly with an eye on upgrade routes and inter-working with IBM systems,

UNIX, DOS and MAC. It also raises the issue of the human interface: should we be

developing specialist code or code that is easily used within familiar environments by non-

specialists? If the answer is yes we have to confront the problem of huge software design costs

and that extra memory and power starts to look less effective.

What power do we really need? As we shall discuss later some problems require GFLOP ->

TFLOP power and > GBytes memory. How do we get it? National super computers or local

solutions?

V. Machine power II: vectorisation and parallelisation

Even with the projected advances in integrated circuits it is unlikely that desktop single

processor GFLOP power is imminent. Parallel processing in the widest sense of the word is
usually advocated as the way ahead and of course forms the basis of many super computer

approaches.Vectorisation is the least flexible in one sense and so is easier to use, full-scale

parallelisation, for example in, software configurable transputer array is often highly efficient

in run-time but may be costly in development time. If the new found universality offered to

computationalists by the workstation revolution is not to be over-turned it is essential that some

order and standardisation is brought into parallelised codes for general and JQW use. Our own

approach at Glasgow is to cut development time and improve portability by re-generating all

our codes in common parallefisable format, for which we have chosen finite-element algorithms

as the main format which can cover classical device modelling through to many electron

quantum transport. These codes are designed to run on arbitrary numbers of transputers and so

can be developed in simple workstations before transfer to the main cluster. It appears at

present that the main lesson is to use the workstation as the main hardware tool but

supplemented by networking to compute intensive local parallel machines of intermediate

power.

These arguments for the workstation approach pale into insignificance when we consider the
opportunities that workstations now offer for visualisation.

6. Visualisation
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The chemistry community was quick to develop visualisation tools, many of which are now

available in the public domain for quite ordinary workstations. It is thus possible to put on

appropriate goggles(plus IR sensor) and guide the viewer through a colour stereo journey

through a molecular structure on a Silicon Graphics workstation. Virtual reality systems have

been pioneered by the computational chemists. In a sense this is obvious, the complexity of

molecular design is in direct space: it is three-dimensionally geometrical and topological.. In

device modelling the effective parameter spaces are less physically obvious and often high

dimensional. We have yet to learn how best to represent dynamic data for real devices. The 3D

representation of electron and hole trajectories colour coded for temperature is already good

practice and drawing a leaf from quantum chemistry the use of 3D transparent (cloud

representation) colour contours for potentials of temperature surfaces should be manageable.

This requires 24 bit colour high resolution workstations and of course soaks up memory and

CPU time (graphics accelerators of course are a way out). At Glasgow we h.ove been

developing movie and graphics techniques to help us gain intuition into the transient few

electron problem in quantum waveguides and single electronic systems. Like the mediaeval

schoolmen there is nothing to be gained by not trying things out. I believe that visualisation is

crucial to the development of computational electronics especially if the aim is to provide access

to general designers and experimenters. Multiple displays with friendly interfaces will be

essential. This route should not be left to chance it should be organised and draw on the

experience of other communities. In particular the input/output of visualisation should be linked

to other software such as CAD codes where possible.

VIl. Software

The demands of visualisation, operating systems, portability, parallelisation bring us to the

prospects for the software side of the business. It also raises the issue of what level we should

develop our computational models. First some generalities. It is becoming obvious that

computational electronics involves large codes which are both continuously developing and

meeting new demands from interface and visualisation requirements. Although there is huge

investment in it, FORTRAN is not the best medium for managing and verifying large quickly

developable, de-buggable codes (my own bias was already admitted earlier - I was brought up

on ALGOL). C, C÷÷, PASCAL all have their merits especially in object oriented forms. The

answer is not to choose the best (I actually am attracted to functional programming languages)

but to choose the best for the community.

On visualisation should we be developing our own codes or providing hooks into public

domain or commercial software? I would argue for both because today's best visualisation

software has evolved from earlier scientific studies.
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4

One of the most interesting developments has been the spread of software such as MATHCAD

and MATHEMATICA which provide highly simplified frameworks for quickly solving what
used to be formidable problems (with excellent graphics thrown in). The use of symbolic
techniques and functional programming make these approaches very attractive for certain
problems (for example simple ID tunnelling simulations). But they have little efficiency and it

is often difficult to program them for efficiency. Nevertheless these approaches do provide
universality.

VIII. Orpnised modelling

Lke synchronised swimming I believe that organised modelling will eventual appear sensible
and exciting. We need to learn from communities like the chemists that there is mutual
advantage in sharing, documenting and jointly developing community codes for device
modelling. There are too many stand-alone operations to bring the promise of universal access

to modelling closer.
There is a great deal of in-house expertise which is fiercely guarded (not always with
justification). I would like to see this type f workshop develop into a forum that aims to set
standards, goals, achieve inter-working and sharing of knowledge so that full attention can be
paid to applications driven research. Paradoxically some organisation is necessary because of
the problems of diversification which come from the freedom brought about by the workstation
revolution. How this should be achieved is a subject for debate.

IX. New opportunities
4

Finally, let us turn to a selection of the new opportunities for the core of computational

electronics - the models, applications and tools themselves. Many of these are represented at
this workshop, some are steeped in antiquity, others are striving for birth.
In classical/semi-classical models the challenges are in TeraHertz high frequency device
modelling, the inclusion of thermal effects, the incorporation of process models. Despite the
complexity it is becoming possible to devise physical models which quantitatively describe real

devices. These will be essential as integrated circuit technology heads into the fully sub-micron
regime. The advent of surface probe technology (STM, AFM etc.) and on-chip electrometry
and capacitance techniques will open up the hitherto problematic surface and interface charging
problems which will underpin the model development. There are considerable opportunities for
modelling which is designed to interpret the new atomic scale probes.
The same on-chip techniques have recently allowed direct observation of the ubiquitos

fluctuation potential which bedevils quantum devices and the direct observation of many
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electron states and their filling in quantum dot structures. The application to ultra-small

commercially oriented devices will be challenging and will require active modelling work. The

aim is to understand and control the intra- and extra-device environment in detail.

The shift to ultra-small devices and devices with ultra-small capacitative regions brings up the

issue of quantum charging effects: Coulomb blockade, correlated tunelling, macroscopic

quantum tunneling, telegraph and shot noise effects associated with the discreteness of the

electronic charge. The modelling required here and for the now extensive range of single

electronic systems is non-trivial.. Single electronics is scaleable to high temperatures by

fabricating sufficiently small capacitative tunnel junctions. It is already integratable. Techniques

from the charge density matrix, the quantum Langevin equation, Monte Carlo, Traffic theory

and linear programming are all being brought to bear. The single electron problem actually

turns out to be a many body problem and much remains to be discovered. Device-device

coupling is an unavoidable reality in such systems and extended systems of devices need to be

modelled. Control of killer efects such as quantum fluctuations, charge-trapping de-trapping

and cross-talk can in principle be handled by designing the substrate electrostatic environment

correctly: 3D modelling on heterostructres is essential here.

There is now enormous scope for quantitative quantum modelling but we should be careful to

distinguish the physically interesting from the engineering possibilities. To restore some

balance I should remark that my own interests prtly involve studying quantum device systems

fabricated within two-dimensional electron gases which can act as atomic scale instrumentation

for exploring hithto intractable regimes of quantum physics such as delayed-choice, empty

wave and quantum measurement problems. In this context we have been recently successful in

modifying the Bohm pilot wave version of quantum mechanics in setting up and solving

problems in quantum transport theory.

If we pursue the limit of miniaturisation of devices to its logical conclusion we encounter

structures on molecular scales. The problems of bioelectronics, biosensors, molecular sensors,

molecular electronics and nanoelectrochemistry all converge with device electronics at

nanometre scales. Even the techniques in quantum chemistry for studying the STM tunnel

curent and energy spectrum of a small molecule bound to a surface bear striking resemblance to

quantum dot modelling. The long range tunnelling of electrons through polymer chains, redox

centre arrays and enymes is closely related to the electronic soliton dynamics of single

electronic systems.

The future then is rich in promise, quantitative models, evolving interdisciplinarity and a chance

to develop a strong mature modelling community properly integrated with industry. I look

forward to a new golden age.
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Discretisatlon of the Hydrodynamic Transport equations using the Control
Region Approximation

P.A.Mawby and A.McCowen
Department of Electrical and Electronic Engineering
University College of Swansea
Singleton Park
Swansea SA2 8PP

Abama This paper focuses on the discretisation of the hydrodynamic transport equations for
electrons in sub-micron MOSFET structures. In particular initialisation of the electron
temperature equation, and the important problem of accurately calculating the energy input
term (J . E) on a generalised triangular FE mesh will be considered. The discretisation is
applied to the calculation of substrate leakage currents in sub-micron LDD MOSFETs, the
results of which will be presented.

I. Introduction

As the size of active devices in VLSI sub-systems is continually reduced the validity of
the standard drift-diffusion equations, as commonly applied to model semiconductor devices, is
brought into question. The basic assumption made in the derivation of the drift-diffusion
framework is that the charged carriers in a device are in thermal equilibrium with the lattice
phonons at some ambient temperature.

The kinetic Boltzmann transport equation is the starting point for describing a many-
particle carrier-phonon system, however, direct solution of this equation is a massive
computational task and is therefore generally not attempted. A more practical approach is to use
the first-five moments of the Boltzmann transport equation to provide an approximate solution
which neglects the higher-order moments. These moment equations are commonly referred to as
the hydrodynamic equations, which are basically conservation of charge, conservation of
momentum (one in each of the three spatial dimensions) and the conservation of energy. This is
an acceptable approximation provided there is sufficient randomisation of the thermal energy in
the system to allow the meaningful use of average quantities such as velocity and effective carrier
temperature. Under these conditions, the hydrodynamic equations, when used in the relaxation
time limit, provide a practical engineering platform, which can be used to investigate hot-carrier
effects such as velocity saturation and velocity overshoot.

This paper describes the discretisation of these equations using the Control Region
Approximation. This method is general and is not restricted to a particular shape of element,
however, we will assume the use of triangular elements. This has particular importance in the
definition of the energy input into the energy moment equation. This will be discussed more fully
in section 6.
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Application of the moment method to the Boltzmann Transport Equation produces a series of
equations, one for each moment taken. The resulting steady state electron energy moment
equation can be written as

V-S.-E-J,+ Rw,+,w-w, =0 (1)

here S. is the energy flux vector, the second term describes the energy input into the system, and
the last two terms describe energy loss in the system the first due to carriers recombining and the
last due to inelastic collisions in the device. The average electron energy is described by w., R is
the recombination rate and -z. is the energy relaxation time. The energy flux term is described by
the constitutive relationship

S. Q.- (w. + E) (2)
q

here Q, is a heat flux term which is identically zero under the symmetric Maxwellian assumption,
however it is included heuristically here to account for the energy flow due to carrier thermal
gradients.

The conservation of carriers is described by the steady state continuity equations for electrons and

holes

V.J.-qR=0 (3)

V.Jp +qR = 0 (4)

which again require the constitutive relationships for flux in this case current densities. For
electrons the appropriate moment equation along with the assumption that the momentum
relaxation time is very short compare to the energy relaxation time leads to

J. = -qtL.nVv + g.knMVE + g.kTEVn (5)

where g, is the electron mobility, n is the electron concentration, V is the electrostatic potential, k
is the Boltzmann constant and T, is the effective electron temperature. Hole transport is assumed
to be described by the standard Drift-Diffusion framework.

Jp = -qtipVv + pkTLVp (6)

where TL is the ambient lattice temperature. Finally, Poisson's equation is solved for electrostatic
potential

V.D-p=0 (7)
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where D is the electric flux vector given by

D = eE = -- eVv (8)

e is the dielectric constant for the material. Equations (1), (3), (4) and (7) along with the
constitutive relationships (2), (5), (6) and (8) form a closed set of equations in the variables TE, n,
p and V. Which can be discretised using the control region approximation.

1l Physical Models

Mobility model

At elevated electron temperatures carrier mobility is reduced by increased scattering rates this
causes the carrier velocity to saturate. The electron temperature can now be used as a parameter
in the electron mobility model. In effect it plays the same role as the electric field does in the
standard drift-diffusion context. In this work an electron temperature dependent model is used
which is consistent with the conventional field dependent model for mobility under homogeneous
conditions, which has the form

jAA*(T) =-9 k .TE_ ]} (9)

o is the low-field mobility and Xis related to the electron saturation velocity v, and the energy
relaxation time . by

(10)
2v. .

Impact lonisatlon Model

In hydrodynamic simulations, non-local effects on carrier transport are of primary concern.
Energy consideration in carrier transport plays a crucial role at this level of simulation.
Accordingly, the suitability of using local field-dependent impact ionisation models in
hydrodynamic simulations is not at all obvious. To alleviate this problem, the electric field
dependence of the well-known Chynoweth's empirical formula for impact ionisation coefficient
axis replaced by an appropriate electron temperature dependence. This requires the establishment
of a relationship between the electric field and electron temperature. For the homogeneous case,
the energy equation (1) together with the mobility model (9) can be used to obtain such a
relationship

E 3k(Tjr-T ) +AL, r,'

Using the Chenoweth formula for x3
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a =-a -E J (12)

where a and b ar empirical coefficients, one can model the non-local effects of impact ionisation

through the non-local solution of electron temperature.

IV Control Region Approxirmtion

The partial differential equations that make up the device model are all in the divergence form,
that is they have the divergence of some flux vector quantity and a number of source terms. In
general then they can be written

V-F- S(r) = 0 (13)

Over some local region of the device 11 performing a surface integral gives

if V.Fdfl-ff S(r)dQ=O
a a

S1(14)

fR.Fdr-JJ S(r~I.Q=O
r a

where fi is the outward normal unit vector and F is the boundary of the region. This is now in a
form suitable for discretisation. Consider a typical node i in a triangular mesh as shown in Figure

1.1

j 4

RI

Figure 1. A control region Q (shaded area), of area 4, surrounding node i

The region of integration Q becomes the Voronoi region (shaded) and the boundary r becomes
the boundary of the Voronoi region. The line integral in (9) can now be approximated by a piece-
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wise summation of the flux across each of the edge segments. The integration of the source term
is approximated by assuming a it to be constant at the value found at the actual node, thus

E - SA (15)

A is the Voronoi area associated with node i, M, is the number of edge connected to the node,
and d, is the pipe width connecting the nodes along line ij. So providing we can produce a

suitable method of discretising the flux vectors along an edge we can apply (11) to all nodes in the
mesh, the resulting set of non-linear equations can be solved using the Newton-Raphson method.

V Discrised form of the Semiconductor Equations

The set of divergence equations to solve are

MSydv- E.J,+Rwa+nflAOIi=O 
(16)

S- = 0 (17)
i-a

TJPd# +AA = 0 (18)

EDd# -p.A = 0 (19)
i.1

The constituent relationships are readily discretised, for the first three equations the modified
Scharfetter-Gunmel method is used, and for the electric flux the standard finite-difference
expression is used. The equations are assembled using the standard finite element approach on an
element by element basis. The linear equations are solved using the Bi-CGSTAB method [1].

VI Discretisation of the Energy Source Term (E. J.)

This term provides energy input into the electron ensemble, and its proper discretisation is
therefore essential. The difficulty in discretising this term arises from the inconsistencies of edge
currents in a element When the electric field (E) is to be determined, a unique value for an
element is readily found from the nodal potentials. This, however, this is not true for the current
density field (J.), since the Scharfetter-Gummel method used in the discretisation will only yield

consistent edge currents when the current flow is purely one-dimensional. In order to resolve this
problem several techniques have been suggested [2,3,4]. The first method of Laux is found to be
extremely unstable, especially in the drain depletion region, where there are rapid changes in
carrier concentration and the weighting method can yield a distribution of heating which is both
erratic and unrealistic. The other two methods use completely different approaches to the
discretisation of the (E. J.) term, nevertheless, the discretised forms are almost identical apart

from small second order differences. These terms have significant effect on the stability of the
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solution procedure, since they occur in off diagonal terms of the system Jacobian, and under some
conditions destroy the diagonal dominance of the system. This means that unless an extremely
small mesh spacing is used, which is unphysical and computationally expensive, then a solution
cannot be found for drain bias values over a few volts. For this reason the power scheme [3] is
preferred, as it does not present any apparent convergence problems.

VII Solution algorithm

Figure 2 shows a flow diagram of the solution algorithm. Initially a fully coupled drift-diffusion
solution is sought which is then used to provide an initial guess for electron temperature. It also
provides a good guess for the other solution variables. A decoupled scheme is then used to obtain
a self consistent solution of the hydrodynamic equations. Typically the number of iterations
required for self-consistency increase with an increase in electron temperature.

START

WAS

SPEPftORtI ORUT-OI)FFUSION
SOLUTION AS UTIAL GUESS

SOLVE ENERGY EOUA7ION FOR
gruN. ELECTRON TEIMPKRATIURE

SOLVE ELECTRON CONTIOUTY
AND •OP*NTtN EQUATIONS

SOLVE P01SSSON 9 HOLE
CONTNTY (NUATIONS

CONVERGED

Jos

1"

SOLVE ENERGY EUATION FOR
ELECTRON TEtPERATURE

CONVERGED

7#9

BIAS

STOP

Figure 2. Algorithm for the solution of the hydrodynamic equations (16) - (19)
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W 1Results

The results of the hydrodynamic simulation are demonstrated for a LDD device structure, and
validated against experimental data on a range of devices of differing gate lengths. Figure 3
shows the electron concentration for a 5g&m long channel device and the associated electron
temperature. As expected the electron temperature is highest at the drain depletion edge, there is
also a smaller amount of heating in the channel depletion region. Once the temperature
distribution is established at a particular bias point the local impact ionisation rate can be
calculated bas on the expression given in equations (11) and (12), from which the substrate
current can be evaluated by summation across the device and weighting by the Voronoi area

.- qnvcpt (20)
WU mda

where v, is the saturation velocity. Figure 4 shows the terminal currents for a 0.8grm length
device, compared with experimental results for the same structure. In order to get such a good fit
an energy relaxation time of 0.02ps has been used, and a saturation velocity of 9 x I06 cm/s has
been used. The agreement with these same parameters is equally as good for shorter gate lengths.

IX Discussion

In his paper we have presented a self-consistent model capable of solving the hydrodynamic
equations in semiconductor devices. The equations have been discretised on a general mesh using
the control region approximation, careful consideration has been paid to the discretisation of the
heat source term.

Results of the method have been demonstrated for an LDD MOSFET structure and found to give
excellent agreement with measure drain and substrate currents.
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2-Dimensional Solution to the Boltzmann Transport
Equation to Arbitrarily High-Order Accuracy

Ken Hennacy, Neil Goldsman and I D. Mayergoyz

Department of Electrical Engineering,
University of Maryland,
College Park, MD 20742

Abstract
In this work, we present a general 2-dimensional spherical harmonic formulation of Boltz-
mann's transport equation. Until recently, numerical implementation of this approach
has been discussed for either 1-dimensional geometries, or only a few of the spherical har-
monics 11, 21. In this paper, a formulation is presented that includes an arbitrary number
of spherical harmonics.

I. Introduction

Device modeling by direct solution to the Boltzmann transport equation is usually not
performed because of dimensionality problems and difficulties in evaluating the collision
integral. To directly account for 2-dimensional device operation with the Boltzmann equa-
tion, we would normally have to perform calculations in 5 dimensions (2 dimensions in
real-space and 3 dimensions in momentum-space). To ovcrcome this 'curse of dimension-
ality' a new approach to solve the BTE in device models is being developed which uses a
spherical harmonic (SH) or a Legendre polynomial expansion.

II. Indefinite Spherical Harmonics Expansion

One of the reasons why we are interested in this method is that it gives us the ability
to produce differential-difference operators for the evaluation of the collision integral to
all orders in the expansion. Finding expressions for the rest of the BTE operators, how-
ever, involves some work. To solve the 2-D BTE to high-order accuracy, the distribution
function is expressed in terms of an infinite spherical harmonic expansion with unknown
coefficients that depend on energy and position:

f(r, k)- ," f.•, (r, c) Yj' (0, 0) (1) 4

Yj'(0, 0) are the spherical harmonics[31; r f(r, e) are the coefficients which are
to be determined; I = 0, 1,2, ...... ; and for each 1, the superscript m = -1, -1+
1, .... ,0, ..... I- III-

The spherical harmonics give the angular dependence of the distribution function in mo-
mentum space, and the coefficients provide its magnitude. The SH-numerical formulation
allows us to account for the angular dependence of the distribution function in momentum
space (9, 0) analytically, thereby reducing the dimensionality of our calculations from 5
to 3.
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III. SH Formulation to Arbitrarily High Order Accuracy

The objective is now to determine the unknown coefficients fJ"'(r, e), which can be used to
construct the distribution function. Furthermore, to minimize the possibility of truncation
errors in the SH approach, we have developed a technique to determine the coefficients to
arbitrarily high order. The basic idea behind the approach is to automatically generate
a system of equations for all the unknown SH coefficients fp(r, e), and then solve the
system and construct the distribution function using the above summation.

To generate this set of equations, we first substitute the above summation into the BTE.
Next, we project the BTE onto each of the SH basis functions. The projection onto the
1, m'th SH basis function, which yields an equation for the 1, m'th coefficient, is illustrated
by the following operation,

JdflY,-m(0, 4,-{(Vice -Vr E(r) -Vk - [e]) Y(,E -~(O, =0

By performing a similar projection onto each of the SH basis functions, the angular
dependence of the distribution function is integrated out, and an infinite system of coupled
equations is generated for the unknown coefficients.

In principle, this set of projections could be performed as is, leaving a system of differential-
difference-integral equations for the unknown coefficients fr(r,e). However, the initial
substitution of the SH expansion into the various terms of the BTE gives rise to many
nonlinear products of SH basis functions. Projecting these nonlinear products by per-
forming the indicated integrations would become unwieldy. Furthermore, since an infinite
SH expansion is present, each equation would contain an infinite number of terms, and
each equation would therefore be directly coupled to all the other generated equations.

To simplify the system, we take advantage of the SH recurrence relations[3]. These re-
lations allow us to re-express all nonlinear products of SH basis functions in terms of
linear combinations. Once each term in the BTE is expressed as a linear combination,
we can take advantage of the orthogonality of spherical harmonics and easily perform the
projections indicated by Eqn. (2).

IV. Generalized System of SH Equations

After using recursion and performing the indicated integrations, we obtain the remarkable

result that almost all of the infinite terms in each equation vanish identically due to
orthogonality. Furthermore, we find that the coupling between equations is only through
neighbors. Another extremely useful result is that each equation has an identical form.
The system can therefore be automatically generated to arbitrarily high order and then be
solved numerically. The equation for the 1, m SH coefficient is given below. The equation
for any of the other SH coefficients is obtained by appropriately changing the value of the
indices I, m to other allowed integers:
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& (2)
where v(e) -y,, ' - d-y/•&, and -y represents the dispersion relation; the sum is over
the 2 directions in the x - z plane; and the operators a have been defined as,

m M Am •"- I -m --mf1+ll
a ' f T A m2 - - t - + a - t - ( 3 )

a+ lf m fm 1a' - I- - am+ •al • + 11 (4)
- -m+ I i- + +I f(

3 11 a7..1a •- (5)
+• Am uam I + +1 (6)

where at' Due to the need to consider self-consistent boundary conditions
in multi-dimensional problems, it is necessary to produce a set of 2nd order equations
from this set of 1st order equations. Before doing this, however, it is possible to eliminate
mixed partial derivative operators such as - that would occur from such a substitution
procedure by introducing the guage transformation,

9 -+ e' - eO(i) =_ H (7)

as discussed in Ref. [2]. Here, the effect of the transformation is to produce the same set
of equations as Eqn. (2) except that now, the energy derivatives are no longer present.
This is because the derivatives with respect to position now have a new meaning, i.e. they
are evaluated for fixed values of H.

V. Results

We have solved this generalized system for the 2-D space-independent case. This system
is truncated, discretized and solved numerically. Solving the space independent BTE to
10 orders requires less than a minute of CPU time on a Sun4 work-station. Fig. 1 shows
the SH coefficients coresponding to I = 0, 2,4 for a 100A-V electric field 45 degrees from the
p3 axis in the 11 direction. Fig. 2 shows a comparison of this result with the case of the
electric field in the direction of the p3 axis. The purpose is to demonstrate how different
SH coefficients become important to resolve the 2-dimensional angular dependence of the
distribution function. Calculation of the isotropic coefficient remains the same, while the
magnitude of higher order coefficients change in response to the changing values of the
spherical harmonics. It is believed that some numerical error is present at low energy for
the higher order coefficients as it was expected that the shapes of the coefficients of the
same order in I should be the same.
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Fig. 1. SH Coefficients corresponding to 1-0,2.4 for a 100 Wenc
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Fig. 2. A comparison of SI coefficients calculated for two different
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VI. Summary

We have developed a new method for solving the BTE for 2-dimensional geometries.
The method reduces the dimensionality of the problem from 5 to 3. Theoretically, the
orientation of the coordinate system should not affect the calculation of the distribution
function, however in practice with the direct method, a small numerical difference is
noticed.
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Comparison of Cellular Automata and MINIMOS

simulations of submicron MOSFETs

A. Rein, G. Zandler and P. Lugli

Physik Department and Walter Schotky Instiut, TU M~atchen, D-85747 Garching, FRG

Abstract
We present a detailed comparison of a novel cellular automaton (CA) technique and a standard
drift diffusion calculation (MINIMOS) of high field transport in semiconductor devices. The
CA method may be viewed as equivalent to the Monte Carlo technique but can easily handle
ensembles with more than WOs particles, can efficiently deal with complex geometries and
achieve accelerations on multiprocessor computers that scale linearly with the number of
processors. With this new technique Si MOSFETs have been simulated for different gate
lengths and gate voltages and the results compared to MINIMOS.

1. Introduction
Device simulation has become a crucial and strategic part of today's microelectronics [1-3].
Drift diffusion approaches [4] are commonly used for device modelling because of their
intrinsic speed. They suffer though from the several approximations of the underlying physical
model. The Monte Carlo (MC) method [5,6] belongs on the contrary to the most sophisticated,
but at the same time the most costly, of all simulators. For this reason, the MC method still
remains restricted to university and laboratory research, and has not yet become a common
modeling tool. It would therefore be highly desirable to develop a simulator of comparable
physical content as the MC, but much faster and also capable of exploiting the potential
offered by vector and parallel processors more naturally.
Recently, a new method has been developed which appears to meet these requisites, the
Cellular Automata (CA) approach [7,8]. So far, only preliminary tests of its applicability to
device modeling have been carried out. In this paper, a critical assessment of the strengths
and limitations of the CA for realistic device simulations is given by presenting the first
quantitative and detailed comparison between the CA and a standard Drift-Diffusion approach
based on the MINIMOS code [1] for a Si MOSFET.

II. The Cellular automaton for device simulations
Like the MC method, the CA is a physical approach to carrier transport in semiconductors
based on the simulation of a random walk of classical particles subject to probability scattering
events by phonons, impurities, other carriers, whose energy dependence is evaluated from
Fermi's Golden rule [5,6].
In general, the electric field acting on the particles is a function of position; in order to fully
account for non-homogeneous situations (and therefore to simulate semiconductor devices) the
MC and the CA simulations have to be self-consistently coupled to Poisson's equation [5,6].
Recently, the full BE for carrier transport in semiconductors has been transformed to a CA
[7]. This constitutes an important improvement, since CA are traditionally only used in the
context of transport, for fluid dynamics [9,10] or drift-diffusion simulations [11]. In general,
a cellular automaton consists of a lattice with a finite number of states attached to each lattice
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site. The population of these states is simultaneously updated according to deterministic or
nondeteministic rules in discrete time steps. The dynamics of CA are governed by local
rules, i.e. updating site variables involves only a small number of neighbors in each time
step. For this reason, CA can optimally utilize massively parallel computer technology. In
addition, the locality of the dynamical rules allows an efficient and flexible treatment of
complex geometries. The major characteristics of CA are the two length scales they operate
on. The first described by the discrete microworld on a lattice obeying a ficticious dynamics
of pseudo-particles, whose length and time scales are much shorter than the physical scales.
The second is a continuous macroscale with the physical observables, which are obtained in
practice by taking averages over many cells.
In its implementation for the solution of the BE, the CA consists of a lattice in position
space, each site of which has a finite number of momentum states. The nondeterministic
transition rules between these states associated to collision events are determined from the
quantum mechanical scattering rates (in the same way as in MC) and from the classical
equations of motion. Due to the locality in position space of quantum mechanical scattering
events, which is a basic assumption underlying the BE, there is no principle problem to
convert these transitions in momentum space into local CA-rules. On the other hand, the drift
and diffusion terms in the BE link the distribution function to its value in different position
and momentum space locations, being therefore nonlocal in nature. Additionally, a single
semiclassical particle trajectory cannot in general be reproduced exactly on the discretized
phase space of the automata. Therefore, the kinetic terms of the BE are replaced by hopping
p*obabilities in both position and momentum space in such a way that the equations of motion
are fulfilled on the average for an ensemble of pseudoparticles. By an appropriate choice of
lattice constant a and timestep dt, the hopping events can be restricted to transitions between
nearest neighbors (or second nearest neighbors). This choice is restricted by the desired
resolution in position space and by the maximum physically relevant velocity, which must be
less than a/dr. This procedure results in a master equation for the state occupancies which
contains only on-site transitions between different momentum states and transitions between
nearest neighbors with the same momentum state. For a rigorous derivation and a detailed
discussion of the basic algorithm, see [7].
We have estimated the number of operations that translate into MFLOPS required on a scalar
processor for simplified MC and CA device simulations on a fixed field distribution that
includes nonparabolic bands and the standard scattering mechanisms for GaAs. We find that
an ensemble MC simulation requires at least 103*N operations, where N is the number of
particles in the simulated ensemble, while the CA requires about 101"N operations, providing
a speed-up of two orders of magnitudes with respect to MC. The principal difference is
that the CA maps the Boltzmann equation onto a set of discrete rate equations for discrete
variables that involve only integer arithmetic. In momentum space, this discrete dynamics
allows one to use predetermined scattering tables both for the total scattering rates as well as
for the free flights. In the CA, the final k-state is picked by a simple assignment rather than
by the algebraic solution of nonlinear equations as in the MC. In addition, the motion in real
space is discrete in the CA and consists of deterministic hops between nearest neighbor cells.
Thus, the real space motion is automatically synchronized and occurs in a strictly ordered and
predictable fashion, in contrast to the MC, where the exact continuous trajectories of each
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particle have to be followed. Clearly, very efficient Poisson solvers need to be coupled to the
CA in self-consistent device simulations. Our experience shows that SOR algorithms are too
slow and can be the bottleneck of a CA simulation, particularly for large doping gradients.
Well known alternatives to SOR methods are also FACR and FFT algorithms [ 12]. It should be
mentioned that the initialization phase of a simulation, on the other hand, requires significantly
mom effort in the CA method since all scattering tables need to be calculated. Fortunately,
it needs to be executed only once. Modern massively parallel computers employing either
the message passing or shared memory paradigm offer a substantial reduction in turnaround
time, provided efficient algorithms can be implemented on such an architecture. Indeed,
both the MC and the CA can be implemented on MIMD (multiple instruction multiple data)
machines by assigning subdomains of the whole device to the individual processors [13]. Each
processor executes one time step of the simulation on its subdomain, collects the properties
of those particles that will leave the subdomain at the end of this time step, passes this
information to its neighboring processors, and receives information from them about particles
entering its subdomain in the next time step. Such collection of information about the particle
exchange with the neighboring processors requires more computations than needed on a single
processor. This overhead is the price for the distribution of the computational load onto many
processors. We have calculated the ratio of this overhead for the CA and MC thod. Let
Npp be the number of particles assigned to one processor. Within a MC approach, we estimate
that it takes every processor 10*Npp operations to collect and digest the information about
the outgoing and incoming particles. In the CA, this overhead is independent of the number
of particles but only depends on the number of real space cells per subdomain Nit. and the
number of discrete k-states per cell Nk through the relation 10 2 NV',t. With typical
values for device simulations, Npp -A04, Nsite - 104, Nk "-103, one finds that the time for the
message-related computations required on each processor is two orders of magnitude smaller
in the CA than in MC.

Ill. CA vs. MINIMOS simulation of SI-MOSFET
In order to test the capability of the CA to handle the complex structure of a Si n-MOSFET,
a detailed comparison with a standard drift-diffusion algorithm (MINIMOS [1]) has been
performed. The CA simulation employs a non-parabolic band structure for electrons and a
parabolic dispersion for one effective hole band. Furthermore, optical and acoustic phonon-
scattering as well as impact ionization and impurity-scattering are taken into account. Source
and drain contacts are 0.24 pm long, each separated by 10 nm from the gate contact. An oxide
layer of 5 nm thickness has been used (Fig. 1). The doping profile is the one calculated by
the MINIMOS pre-processor. The high carrier density in a MOSFET requires large particle
ensembles in order to reduce the statistical noise and we have used 300000 particles. On
several scalar RISC workstations, the execution time for the CA turned out to be 10-15 times
larger than MINIMOS.
In figure 2(a) we show the drain characteristics for two different gate voltages (1.5 V and
2.5 V). The gate length (Lo-= 0.25 um) has been chosen close to the limit where MINIMOS
simulations can still be expected to be reliable. The drain characteristics agree well with one
another, except in the regime of voltages above 2 V, where a slight velocity overshoot (which
is not accounted for in the drift-diffusion approach) acts to increase the drain current.
Figure 2(b) shows the I-V characteristics for a shorter gate length of 0.16 pm. Short
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channel effects become more important in this regime,
low lown and the two methods give significantly different drain

S0____ .2p L,.4 W characteristics. This originates almost totally from a
significant velocity overshoot that is accounted for by

Cfot - . the CA simulation but not by MINIMOS. In fact, as
shown in Fig. 3 (a), the electron channel density of the
0.16 pm MOSFET is very similar for the two methods
up to an applied voltage of 4.0 V and a gate voltage

CS p-tfr of 1.5 V. In contrast, the drift velocity as obtained in
the CA shows a significant overshoot for drain voltages
above 0.6 Volt, in contrast to the MINIMOS results

0.75 pm (Fig. 3 (b)). At last we present our investigation
FIG 1. Geometry of a 0.25 im MOSFET. about impact ionisation. For the cellular automaton
In x-direction the device is subdivided into we used a microscopic impact ionisation model for
126 and in y-direction into 78 blocks, respec-
tively. The n" doping for the contact region high-field energy electron transport [14] and adapt the
is 10Acm 4-3. homogeneous ionisation rate to experimental data [15].

In figure 4(a) and 4(b) position resolved distributions of impact ionisation events are given for
the 0.25 pm MOSFET at a drain voltage UD = 4.0 V and gate voltage U0 = 1.5 V has been
used. Figure 4(a) illustrates the MINIMOS simulation, where the maximum of the impact
ionisation is located between gate and drain. This also holds for the distribution of impact
ionisation using the cellular automaton (Fig. 4(b)), but the maximum is shifted closer to the
intersection of gate and drain. The overall agreement is still very satisfactory.

, 1 "1000

(a) 1200 (b)

0 1.0 2.0 3.0 4.0 0 1.0 2.0 3.0 4.0

Drain Voltap [M/ Drain Voltage MV]
FIG 2. (a) Drain current vs. drain voltage for a 0.25 pm Si - MOSFET calculated with the drift diffusion model MINIMOS
(tringles) and with the cellular automaon(full line). (b) Drain current vs. drain voltage for a 0.16 pm Si - MOSFET.

- Gate

"j 40 4.0 V• -12 YD~OV* A

j( : & . U.2 0.0_2 V. 0V4

FIG 3. (a) Vetically integrated sheet density of electrons in the 0.16 jam MOSFEF ( UDi4.0 Volt; Uow 1.5 Votk). The full
line represenw the CA calculation and triangles results of MINIMOS. (b) Vertically weighted drift velocity under die gate
(v-, intdicales the saturaon velocity of bulk snlmn)
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IV. Cmntlusion
We have presented a detailed comparison of a novel cellular automaton (CA) technique and

a standard drift diffusion calculation (MINIMOS) of high field transport in semiconductor

devices. Good agreement between both methods is found for simulations of a submicron
MOSFET within the regime of validity of MINIMOS, while for very short gate length nonlocal
transport effects significantly influence the results of the CA simulation. In particular, the
occurence of velocity overshoot in the channel of the device is responsible for the enhanced
drain current in the CA simulations.
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Two-Dimensional Quantum Modelling of Heterojunction Field Effect Transistors

R. Drury, R.E. Miles, C.M. Snowden

Microwave and Terahertz Technology Group,
Dept. Electrical and Electronic Engineering,
University of Leeds,
Leeds, LS2 9JT, UK

A new, fast, two-dimensional model is presented that couples the classical semiconductor
transport equations with quantum mechanics. It is particularly suited to the simulation of single
channel, pseudomorphic and multi-channel HFETs and delta doped structures, where the
primary conduction path between source and drain is via carriers confined to a two-dimensional
potential well. The model solves Poisson's and the current-continuity equation self consistently
with the effective mass Schroldinger equation, the latter taken in slices perpendicular to the
heterojunction. Current flow is modelled by restricting the discretised "quantum" electrons to
two-dimensional motion, neglecting non-equilibrium dynamics. The model improves on
previously reported versions by allowing a full two-dimensional treatment of the Fermi-level,
allowing a non-equilibrium treatment of Schr6dinger's equation.

Inftrduction

The increasing use of AlGaAs/InGaAs/GaAs heterostructure devices has lead to great interest
in modelling the electrons confined within 2 Dimensional Electron Gas (2DEG) layers.
Classical schemes are based upon the electron wavefunction being described as Bloch states,
which in turn are derived from flat band conditions. When events occur that approach the size
of the electron wavepacket, ie. the de-Broglie wavelength, this approximation is invalid and
quantum effects have to be included. Unfortunately a rigorous solution of the quantum
mechanical equations becomes very involved and computationally intensive, limiting their use
within physical device modelling. For this reason a simplified scheme has been adopted
whereby quantum effects are modelled by solving the effective mass Schr6dinger equation (1)
across the heterojunction but assuming the classical approximations to hold elsewhere.

where

Val. =-+Vk+V (2)

Vh is the heterojunction potential and V, the exchange-correlation energy [1]. This approach
is justified as the smallest event in the x-direction is the gate which is at least an order of
magnitude larger than the electron wavelength. The electron density is now described by
equation (3), 12j, instead of the classical Fermi-integral.
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n _ NC2D~ k'12 log, I + exp d4-X) (3)

The model therefore solves Poisson's equation self-consistently with the classical charge
transport equation, with the modification that the electrons are divided into two classes. The
first posessing "quantised motion" are only permitted to move parallel to the heterojunction,
and are formed from the electrons whose intersub-bmnd separation is greater than the thermal
energy. kpT. The second are normal three-dimensional electrons, which, in order to reduce the
computational demands are approximated within the model by the Fermi-integral taken from
a quasi-continuous conduction band edge shown in Figure 1.

oi --

~0.

I0.4
0.2

0 so10

Figure 1. Conduction band edge of a pseudomorphic AIGaAs/InGaAs/GaAs HFET showing
the separation of the two- and three-dimensional electrons.

Simulation Details

The equations are discretised over a non-uniform rectangular mesh using central finite
differences. Schridinger's equation is solved, first by finding the eigenvalues via a bisection
method based upon a "Sturm" sequence 131. This method is both fast and robust, with the
upper and lower bounds initially set using Gershgorin's theorem 141, and then updated using
the last calculated eigenvalue. The eigenvalues are then substituted into Schr~dinger's equation
and eigenvectors found using a Newton iterative scheme. The current-continuity equation was
formulated using current densities calculated at the half-nodes, assuming the independent
variables * and 4 vary linearly in between the nodes. This has the advantage that no
"Scharfetter-Gummel" interpolation scheme is necessary, substantially simplifying the device
equations.

The principle device equations are all highly non-linear in the independent variables 4, W.
Consequently a modified Newton-Raphson iterative scheme was employed which requires the
Jacobian, a matrix formed from the partial derivatives of the functions with respect to each of
the variables. All of the terms in the two equations, with the exception of the partial derivative
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of nri with respect to # are readily differentiable. This term depends explicitly upon the partial
derivatives of tk and I,. which are calculated using perturbation theory, equation (4)

s-k I , ak 0 (4)

using this result it is evident by inspection of equation (3) that

aoD a1In2 (5)

Results

The model has been used to simulate several devices including single channel, pseudomorphic
and multichannel PETs. A typical pseudomorphic device structure is shown in Figure 2. The
ohmic contacts are assumed to extend to the 2DEG and thus the modelled region is truncated
placing the source and drain contacts at the sides. A lumped access resistance is then added
explicitly.

umPe I ( (0-5p drai

Suface MPAXas 3%A

]o~M4:s 20% In 14•

y 100amL_.____

Figure 2. A typical pseudomorphic HFET structure used in the simulations.

Figures 3 and 4 show Fermi-level and conduction band edge profiles, taken at VDs = 1.7V and
VoS = OV. The Fermi-level shows significant distortion around the gate, clearly perturbed from
equilibrium, although in the InGaAs channel and GaAs substrate the gradient of the Fermi-
level (driving force) is nearly parallel to the heterojunction. The conduction band edge shows
the two-dimensional potential well formed in the InGaAs.
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Figure 3. Fermi-level for a pseudomorphic HFET.

131.

Figure 4. Conduction band edge for a pseudomorphic HFET.

Figure 5 shows the IDs-VDs characteristics for this device, comparing quantum (solid lines) with
classical Fermi-integral solutions, from which it is evident that the quantum simulation has a
lower output current. This is mainly attributable to the reduced carrier density produced by this
scheme, as current flow in the y-direction is mainly limited by the high access resistances to
the 2DEG regions which are populated by three-dimensional electrons in both cases.
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Figure 5. IDS-VDS curves for the quantum and classical simulations.

Conclusions

A two-dimensional HFET model incorporating quantum mechanics is presented that solves
Schr~dinger's equation in a more self-consistent fashion than has previously been reported. The
quantisation in electron motion is explicitly taken into account, and found to have little effect
in the final current-voltage curves. A significant reduction in current is observed between
quantum and classical models, principally attributable to a lower free electron density.
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M/A-COM inc., Corporate Research and Development Centre, Lowell, MA 01851-2694, USA.
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Abstract
In recent years, the effective field approach has been developed in terms of hydrodynamic
variables [1, 2, 31. In this paper, the effective field is formulated for the calculation of
transport coefficients in a drift-diffusion model. With these transport parameters, it was
found that calculations of the energy distribution function tail, and average velocity match
suprisingly well with Monte Carlo results, for a variety of cases. Therefore, results so far
encourage further investigations into the effectiveness of characterizing device performance
along with device reliability in terms of the effective field concept.

I. Introduction

Recently, it has been shown that in some cases the effective field determined from the
average energy is sufficient for characterizing the shape of space dependent energy distri-
bution function tails [4]. In this work, the effective field is defined as the table of electric
field values that are generated by finding, at each space point, the best match between a
homogeneous field and inhomogeneous field calculation of the energy distribution function
tail. Then, the effective field concept is extended to include computations of mobilities
and diffusion coefficients, with justification based upon the Bogoliubov ansatz [51 .

1. Modeling

In l-D, the following analytical formula for the effective field has been obtained from
Boltzmann's equation,

Hee i ssentatteEeii(Z) = LY+,o1 ~#. 1

Here, it is seen that the derivative of the electric field is being attenuated by an exponential
term, thus demonstrating that the faster the field varies, the more the effective field will
lag behind the locally applied field. This behavior is in qualitative agreement with the
observations of Ref. [6]. The quantity A is referred to as the relaxation length, and is
shown to be well characterized by the ratio of the diffusion coefficient to the average
velocity il,

A D (2)
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This is a transcendental equation, however approximations can be introduced by consid-
wing Fig. 1, which is a plot of the ratio of diffusion coefficient to drift velocity for a
homopueous applied field. This plot characterizes the variation of A, and it is seen that
at high fields, where velocity saturation is present, A vares slowly.

.15

.05

0 50 100 150 200 250
Electric Field (kV/cm)

Fgi. 1. This graph demonstrates the general dependence of A upon the size
of the electric field. For high fields,A becomes the length scale over vhich
the average envergy relaxes.

Once the effective field is known, the drift velocity is found to have the following simple
form,

TI= f vh(Efoj) (3)

which is a formula that is not restricted to I-D considerations. Here, vi(E, if) represents
the average velocity of carriers in a homogeneous field E£. j. For low fields, where the slope
of vi(E.,f) is fairly constant, this expression reduces to the conventional, local expression
for carrier mobility. In the limit that the applied field no longer varies, this expression
yields the correct steady state velocity.

Though the drift velocity demonstrates the presence of velocity overshoot, and its rela-
tionship to a varying field, there are diffusive and convective contributions to the average
velocity as well. In I-D, the following drift-diffusion-convection (DDC) equation first
introduced by Sauchez (61 was used to risolve these components,

d (Dn + nd+ n< J,(4).T

The presence of the f term is due to the effect of a spatial variation in the collision
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rate caused by variations in the donor impurities. Using the effective field concept, the
following expressions for the transport parameters were obtained:

D(z) = - - v&rlZ,

<v02!J> . PV2&l (,o)f.A(Z'p

where fk is the distribution function obtained from the effective field. Although equation
(4) represents an initial value problem, it did not pose any major problems for self-
consistent device simulations where two boundaries are present. A second order version
of this equation was also implemented.

III. Results

Shown in Fig. 2 is the effective field profile generated from a Monte Carlo analysis of
the channel region of a MOSFET [3]. Also plotted is the effective field generated from
formula (1), exhibiting a remarkable agreement. Shown in Fig. 3 is the effective field
profile determined from a case studied in Ref. [7J. Also plotted is the expression of tr(E)
and vd to demonstrate that there is a significant difference between using the effective field
drift term, and assuming that the drift velocity depends only upon the locally applied
field.

3x10' ' ' I

--- Electric Field 'I
"2xlO -- Monte Carlo Effective Field ;
E

II

- Analytic Effective Field '

i~10~

0
.00002 .00004 .00006 .00008 .0001 .00012

x (cm)

Fig. 2. A comparison of effective fields from ref. [1) and formula (1). A
Monte Carlo simulation wasn used to verify the value of the effective field
for most of the points in ref. Ill.
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In Fig. 4, a comparison of the average velocity obtained from equation (4) and a Monte

Carlo calculation is performed. For additional comparison, the first order (PI) Loegendre

polynomial calculation performed in Ref. (7] is also included. As can be seen, good

agreement between the Monte Carlo calculation and the effective field calculation of the

average velocity is obtained. The agreement is better than the P1 calculation probably

due to an implicit avoidance of truncation error in the effective field approach.
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Fig. 3. The drift velocity(vj), homogeneous field velocity(vh), self-
consistent electric field (E), and effective field(E.1j)are plotted for a

n+nnl+diode simulation, Bias - 5.0 Volts. The discrepancy between vhandvj
demonstrate the importance of the non-local dependence of the mobility.
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Fig. 4. The average velocity from a drift-diffusion (DD) equation, a Monte

Carlo (MC) simulation, and a 1st order Legendre polynomial (P1) calculation
found In ref. [4) are plotted for comparison. Better agreement than the PI
approach is attributed to an implicit avoidance of truncation error.
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The discrepancy in the barrier region of the device is due to the fact that the diffusion
coefficient has been overestimated by the effective field formulation presented so far. To
account for temperature reduction due to the barrier, the effective field is reformulated
using a different approximation scheme. This approximation scheme insures that the
correct equilibrium behavior is obtained, and predicts temperature lowering. However, a
detailed comparison and study in this region of the device is left for future work.
III. Summary

An approach for device modeling using the drift-diffusion model has been developed which
does not use any empirically determined parameters except for those that are associ-
ated with deformation potentials and band structures. Considerations so far have been
restricted to a single-valley model of silicon. However, the generality of the approach
encourages an investigation into considerations of multiple bands and anisotropic effects.
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ALGORITHMS FOR THE SOLUTION TO THE HELMHOLTZ EQUATION IN
THE NUMERICAL SIMULATION OF SEMICONDUCTOR LASERS.

M. Gault P.A. Mawby and M.S. Towers
Department of Electrical and Electronic Engineering
University of Wales
Swansea, UYL

Abstract

In the numerical simulation of semiconductor lasers a fast accurate method is essential for the
solution to the Helmholtz equation. Various algorithms are considered for this purpose in terms of
speed, efficiency and accuracy and a new algorithm is developed based on the effective index method
with a novel solution to the algebraic eigenvalue equation. The algorithm is found to be highly efficient
for all modes.

L Introduction
As laser structures increase in complexity it becomes more important to simulate their behaviour

in order to understand phenomena dependent on structure and hence optimise their performance. As
manufacturing techniques improve the buried heterostructure (BH) device is likely to grow in
importance. A typical BH device is shown schematically in figure 1 in which the InGaAsP active region
is surrounded by the wider band gap InP on all sides. In the simulation of these structures the wave
equation must be solved to obtain the optical intensity of each lasing mode and the aim of this paper is
to investigate the most efficient way to solve this equation.

InP(n) InP(p) JnPn)

InP(p) In GQAsP InP(p)

Y InP(n)

X

Figure 1 Device Structure

IL Modelling
Assuming TE modes dominate then the wave equation may be given in scalar form as

(--+•-2+0x~y)k. -P2E =0 (1)

where e(x,y) is the permitivity (which may be complex due to gain or loss), E, is the optical field, k is
the free space wave number and I is the propagation constant. This equation must be solved in two
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dimensions for the structure in figure 1. Of the efficient methods that exist the effective index method
[1] is the most commonly used, however as the active area decreases in size and the solution
approaches cut-off the accuracy deteriorates [2]. The weighted index method [3] is an alternative
approach which attempts to increase the accuracy of the solution whilst avoiding the complexity of a
two-dimensional method.

The Weighted Index Method
The weighted index method is an improvement on the effective index method as it uses a

weighted mean of the permittivites in the y direction for each node in the x axis and a weighted mean of
the permittivities in the x direction for each node in the y axis. This is described with reference to figure
2.

Y

region ft. , : ....

•: ! : -- n(ctocdding .)-

• ! " n(core) ý
I

1 1 1i J I i I

b

Figure 2 The Weighted Index Method

The best trial solution is found for

E = F(x)G(y) (2)

F and G are complex functions of the single variables x and y respectively and satisfy the ordinary
differential equations

d2F (3)

-c- +KOO = PIG (4)

where N and ý are the propagation constants of the differential equations. Equation 3 represents a
cut along a' and equation 4 represents a cut along bb'. There are p nodes along the aa 'and q nodes
along bb'. K4 is the weighted mean of e(x,y)k.2 for each nodal value xp. The mean is taken along the y
direction using weights w.., i.e.
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Ina similar fashionKY0 is given by

KO =k!Wife R (6)

7Ue weights a= defined optimally as

wIP= f'".p 2 cx (7)

WA= f"4G2.dy (8)

where F and G have undergone the normalisation

f2 =1 (9)

2 (10)

The best value of A2 is given by the Rayleigh quotient [31

2 =p2

P q

The two one-dimensional wave equations (3.4) are coupled via the weighting factors and are
solved alternately until the, value for 0 converges.

The algebraic eigenvalue equation
With both the effectve and weighted index methods a one dimensional algebraic eigenvalue

equation must be solved.

AE = 2E (12)

where A is complIex and tridiagonal and the optical field E is a column vector. Hf a non-uniform grid is
used then A is Unsy rntrical and must be symmetrised using a similarity transformation. The
eigevwalu and cigenfunction of the coefficient matrix A give the propagation constant P and the
corresponding optical field E respectively. A new highly efficient method is described next.

Evaluzation of the characteristic polynomial
A very fast method to obtain any required eigenvalue is the evaluation of the characteristic

polynomiaL A trial value of the cigenvalue, is used in a Storm sequence which can then be used to locate
the requtired cigeavalue via bisection. For any trial eigenvalue X. the Storm sequence is defined as
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The number of changes in sign between consecutive numbers of the sequence is equal to the
number of eigenvalues smaller than L.. The advantage of this method is its flexibility in that it allows all
the eigenvalues to be found in a given range however the disadvantage is it cannot cope with complex
matrces.

An alternative method is inverse power iteration with successive eigenvalue refniement. It
consists of iterating around the equation

(A - gl)xi,, = kizi (14)

where ki is chosen such that Ixi÷,L = 1. p4 is adjusted on each iteration via

(

A linear system of equations must be solved at each step. This algorithm is fast and can cope with
complex eigenvalues and eigenvectors. The main disadvantage is that the method requires good
approximations to both the eigenvalue and the eigenvector of the problem to initialise. However
advantage can be taken of the fact that the change in imaginary components of the permittivity is much
less than the change in real components. This is due to the BH laser being index-guided in both lateral
and transverse directions. To obtain a good initial approximation to the complex problem the imaginary
components can be ignored and the real problem can be solved via the evaluation of the characteristic
polynomial for the eigenvalue and an inversion performed for the eigenvector. The results can then be
used to initialise the complex inverse iteration with successive eigenvalue refinement algorithm to obtain
the complex solution. A flowchart of the algorithm is shown in fipii. 4Y

remove imaginary
components

obta)in eigenvalue
via Sturm sequence

vig inverse iterltio n

solve complex probie
using prior resuftsý

lasomoe n

Figure 3 Flow Chart of O~peration

141



IlL Results and Discussion
Results are shown in figure 4 for an InGaAsP/InP device using the effective index Method (El),

the Weighted Index Method (WI) and a two-dimensional solution (2D)[2). The fundamental and first

order mode indices are calculated for varying channel widths (W). In this example where the core is

0.35 microns thick the effective index method becomes significantly in error when the width is less than

two microns i.e. when the active region area is less than approximately 0.6 nji2-

The significance of the above results will now be considered with respect to the design of BH

lasers. One of the most important characteristics of these devices is the power at which the first kink in

the light-current characteristics occurs. This kink is due to the first order mode achieving gain and I
commencing lasing. The above results indicate that for accurate determination of this lasing power the

El method is insufficient and the WI method is preferred. An interesting implication of the results given

in figure 4 is that the El method will always underestimate the optical power at which the first order

mode starts to lase and the weighted index method will always overestimate this power. This is a direct

result of the effective index method overestimating the mode index and hence overestimating the optical

gain. Equivalently, the weighted index underestimates the mode index and thereby underestimates the

optical gain. This has important implications for device engineers. If a laser is designed to have a

minimum output power at which the first order mode starts to lase, then using both the WI and El

methods, they can be reasonably sure that the experimental power will be bounded by the results

calculated from the two methods.

3.30

i u-1) finite 
0

c difsference._93.25

12312, 191

'0E InP(n-3.169)

0.1 I nG<aAsP (n=3.392)

3.20- f"
El/ 0.25• InGaA sP(n= 3.53 6)

channel width. microns

(i) Fundamenctal mode l

Figure 4 Typical Result Pi. FiARt-order a dRe
(INSET: Device structure)
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Visualisation Techniques for Semiconductor Bandstructures

Alan Beck, ranklin Bodinm, P. D. Yoder, and Umberto Ravaili

Beckmn Institute
University of Iinois at Urbana-Champaign
Urba&, IL 61801, USA

Abstract

Visualization of semicondcutor bandstructures is accomplished in the 3-D Brillouin zone
by using color rendering techniques to generate energy isosurfaces and color contour plots
on crossectional planes. Combination of the various techniques offers an efficient way to
analyze the data an get physical insight relevant for carrier transport. The visualization is
performed on a Digital 5000 workstation using the Application Visualization System (AVS)
graphics software.

I. Introduction
Advanced investigations of transport phenomena in semiconductors require a detailed
knowledge of the energy bandstructure. This is particularly true when high energy effects
are investigated, since available analytical formulations of the bandstructure are inaccurate
or incomplete. For instance, some Monte Carlo applications suitable for the simulation of
impact ionization and of other efects relevant for device reliability, implement algorithms
with a full bandstructure for the evaluation of momentum space trajectories. We found
that 3-D visualization of the bandstructure in momentum space is an important step for the
understanding of the transport physics and for the development of optimization techniques
for this type of Monte Carlo simulations. Since scattering rates are also closely related
to the bandstructure, the same viualization techniques can be applied to analysis of the
momentum dependence of scatterings.

We have experimented with a number of available visualization tools and we have found
the Application Visualization System (AVS) software to be very suitable for these 3-D
visualization problems. In the AVS environment, most of the applications are built by an
interactive symbolic procedure, asembling an application network with modules available
in a menu. Custom applications can be developed by writing additional modules using C
language progamming. An example of AVS application network we have used to visualize
the bandstructure of silicon is shown in Fig. 1.

IL Visualization Approach

The approach which we found most effective to visualize energy bandstrutures is an ani-
mation of enaergy isosurfac.. We have built a Bn1luoin soe &ad we display the isosurfaces
in the cube which contains it. The slight redundancy of nfomnation which falls outside the
zone helps in getting a visual appreciation of the connection between 4djacent Brillouin
soses. Since an isceurfac only displays information for one energy value at a time, it is
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often necessary to combine this technique with others to get a more complete idea of the
overall behavior. Several isosurfaces can be displayed at one time with the use of trans-
parency and color coding, athough this may lead to extremely complicated images. This
type of visualisation is better suited to visualisation of only the irreducible wedge of the
Brillouin zone. On a full scale, we found very useful to combine energy isomurfaces with
cro-sectiona planes where a color contour plot of energy is represented. The isosurfaces
are generated only on one side of the plane, which can be made to slide back and forth,
and the intersections between the surfaces and the plane offer very helpful visual cues. The
capability to perform rotations of the solid figure allows then the viewer to pinpoint any
specific region of interest. An example of AVS application network we have used to visualize
the bandstructure of silicon is shown in Fig. 1. The network represents actual subroutines
which are assembled in a symbolic way. The banditructure data is input through the
branch beginning with the block mad field while the Brillouin uone is constructed by the
adjacent branch beginning with aead geom. The image is displayed after the program runs
through all the blocks, and the user can then interactively modify the image attributes,
like orientation, sise, color palette, lighting, to adjust the image, or can run again the
program by simply modifying visualization parameters, like the value of energy isosurface,
the position of the cross-sectional plane, or the data displayed in the given geometry (e.g.
switch from bandstructure to scattering rates). The program can also be changed inter-
actively, by breaking the connections in the network, and adding or subtracting modules.
A large amount of information can be visualised at one time, since the isosurfaces can be
color coded with another parameter (e.g. scattering rate) so that by scanning isosurfaces
at different energies a 5-D space is represented.

We present here several examples of 3-D visualization for the silicon energy bandstruc-
ture. Figure 2a shows a view of a cross-sectionad 100 plane for the first branch of the
conduction band in the full Brilluoiu zone. For the sake of reproduction, we use here a
gray-scale palette, ranging from black (lowest energy) to light gray (highest energy). For
color representation, we normally use the conventional rainbow coloring scheme, ranging
from blue to red. It is easy to detect the four X-valleys situated on this plane in corre-
spondence of the darkest regions. The same image for the second branch of the conduction
band is shown in Fig. 4U. In both images, the energy isosurfaces are behind the cross-
section. On the computer, the position of the plane can be moved interactively in real time
by translation or rotation. Figures 2b, 3a,b and show the full isosurface configuration, at
various energies, for he first conduction band branch, and Fig. 4b for the second branch.
Figure 5 and 6 show results for the conduction band of gallium arsenide. The silicon-like
X-valley imosurfaces can be easily identified by comparison with the previous images.

The data for the bandstructure were obtained by using an empirical pseudopotential
approach. All the images are based on a cubic uniform mesh with 41 nodes on each side.
The visualiation was performed with AVS software on a Digital 5000 workstation and the
images have produced on a Tektronix dye sublimation printer.

Acknowledgments - This work has been partially supported by the Semiconductor Re-
search Corporation and by the National Science Fnmdation (NSF ECS 91-22768).
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Figure 1. Simplified AVS network used for the visualisation.

(a) (o)

Figure 2. (a) Gray-scale contour plot of the fint conduction band for silicon on the {100}
plane; (b) fnegy uonrfce at B = 0.2 eV.
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((b)

Figure 3. Energy isourfaces of the first conduction band for silicon at (a) E = 0.5 eV
and (b) E = 1.5 eV.

(a)

Figure 4. (a) Gray-wale contour plot of the second conduction band for silicon on the
{100} plane; (b) Energy isosurfaces at E = 2.4 eV.
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(C) (d)

Figure 5. (a) Gray-scale contour plot of the conduction band for GaAs on the {100} plane;
Energy isousrfam at (b)E -= 0.75 eV; (c) E = 1.1 eV; (d)E B 1.5 eV.
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Computation of the Electron Distribution Function Employing the Theory
of Stochastic Differential Equations

4

Can E. Korman, Alfredo Piazza and Pattana Rugkwamsook

Department of Electrical Engineering and Computer Science
The George Washington University
Washington, DC 20052 4

Isaak D. Mayergoyz

Electrical Engineering Department and Institute for Advanced Computer Studies
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College Park, Maryland 20742

Abstract

In a previous paper, it has been suggested to employ the theory of stochastic differen-
tial equations (SDE) for the modeling of electron transport in semiconductors. It was
shown that the differential equations which describe electron transport in semiconduc-
tors, and which are used in Monte Carlo simulations, can be interpreted as stochastic
differential equations driven by inhomogeneous randomly weighted Poisson processes.4
Based on this connection, the theory of SDE was employed to demonstrate that the for-
ward Kolmogorov-Feller equation which characterizes the transition probability density
function of this random process can be integrated over the initial conditions to obtain
the linear Boltzmann transport equation.

In the paper, we will expand on our previous iesults and present a transport model
which leads to the efficient numerical computation of the electron distribution function.
The model is based on an approximation of the collision integral in the Boltzmann
transport equation by differential operators. As a result of this approximation, the
electron distribution is characterized by a second order partial differential equation in
momentum space. It turns out that the coefficients of this partial differential equation
are the first and second order moments of the scattering transition rate. We will
present the derivation of these terms and also present some preliminary results on the
computation of the electron distribution function based on this model. Furthermore,
by comparing these results with Monte Carlo simulations, we will explore the limits of
applicability of this model.

I. Background:

Previously, it has been suggested that the theory of stochastic differential equations
can be employed to model current transport in semiconductors, (see Ref. [1]). In this
section, we will review some of the previous results and establish a connection between
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semi-classical transport theory and the theory of stochastic differential equations. Ac-
cording to semi-classical transport theory, an electron in a semiconductor drifts under
the influence of a macroscopic electric field and experiences occasional random jumps
in its momentum due to different scattering mechanisms in the crystal, such as, acous-
tic and optical phonons, ionized impurities, etc. This motion of an electron can be
described by the following stochastic differential equation:

dkF

hd = -qE+P, (2)dt

F, = ht,6(t - t,) (3)

Here, 4, i and k are the electron position, drift velocity and wave vector, respectively.
f is the electric field, -(k) is the energy-wave vector relationship and F, is the random
impulse force on the electron due to scattering. This random force can be characterized
by the scattering rate A(k) and the transition rate S(k, k'). The probability of scattering
in time is given by the following expression:

Pr~ti -ti-i > 7-} = exp{- t 'rA(kc(t'))dt'J (4)

Given that a scattering event has occurred at some time ti, the probability density
function for the change in the electron wave-vector is expressed as follows:

6 S(k,,ki +6i(5)
.Mk,)

where k(t-) = k• and k(t+) = ki + at..

Equations (1)-(5) define a Markov process which is discontinuous in wave-vector space
(compound Poisson process). In the theory of stochastic differential equations, such
a Markov process is generally characterized by a transition density function, which
satisfies the Kolmogorov-Feller forward equation, (see Refs. [2] and [3] for further
details). By formally integrating this equation over the probability density function of
the initial state, one obtains the linear Boltzmann transport equation:

+ 6qAJ(i,t) Vf= JJf(x,k,,t)S(',k)dk' - A(k)f (6)

where f is the electron distribution function.

This establishes a direct connection between semi-classical transport theory and the
theory of stochastic differential equations. It also makes it possible to apply the ma-
chinery of stochastic differential equations to semiconductor device modeling.

152

U U • U



II. The Transport Model:

In this section, we will present a transport model which is based on the Boltzmann
transport equation. According to semi-classical transport theory (2), the total force
on the electron is due to the electric field E and the random scattering force F,. The
expected value of this random force can be computed from (3)-(5) and is given by the
following expression:

F7 (k) = E{41 = hJiS(kk+ 6)d6 (7)

This expression is in fact the first moment of the transition rate S. For acoustic and
optical phonon scattering, it can be shown that the expected value of the random force
is given by the following expression:

F,(k) = -7,\(k)k (8)

which can be interpreted as a drag-force opposite in direction to the electron wave-
vector. Substituting this expression into (2), one obtains the following set of stochastic
differential equations:

di
T7 = 6(k) (9)

=d [-q(i, t) - hU(k)k] + F, (10)

Here, Pr denotes the zero mean component of the random (impulse) force.

In order to obtain a transport model suitable for efficient numerical implementation,
the integral operator in the Boltzmann transport equation can be approximated by a
second order differential operator. This turns out to be equivalent to approximating the
zero mean fluctuating force P, by the derivative of a zero mean Wiener process (white
noise). The variance of the Wiener process i.3 taken to be equal to the momentum
dependent variance of the random force:

ij()= ujujS(, k + C¶)dil (11)

This is in fact the second order moment of the transition rate S. The second order
moments of the transition rate can be computed by integrating over equal energy
surfaces in k-space (spheroids or ellipsoids). For instance, in the case of a spherical
band structure, the second moment in the direction orthogonal to i is given by the
following expression: 12

Okkj. ,(k) = j A(")(k),'('; #) (12)
m

and, in the direction parallel to E, it is given by

O'k,,k, (k) = ak.k hk (k) + Il2•() (13)
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Here, m is the index over different scattering processes, 0 is the dispersion factor (see
Ref. [4]) and r. is the radius of an equal energy sphere in k-space after scattering.
Similar relations hold in the case of ellipsoidal bands by the use of the Herring-Vogt
transformation (see Ref. [5]). Figs. 1 and 2 show the expected value of the random

force Fr(k) and the variances ak, 1,, (k) and ak1 ka (k), respectively, as a function of the
magnitude of the electron wave vector.

Employing the approximation for the zero mean random force results in a second order
partial differential equation for the electron distribution function. In spherical coordi-
nates, this equation has the following form:

Of 1 -qE(i, t) - Fr.(k)
S+ =k -

S02f 102 1 r2•• + (14)
2 209ar 2  (14) 9 oa

In the talk, we will present preliminary results on the computation of the electron
distribution function employing the above model.
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Abstract
A parallel Monte Carlo device simulator, PMC-3D has been developed for multiproces-
sors. Through the use of parallel architectures, full three dimensional modeling of the
device domain is possible. Here a discussion of the parallel algorithm is given for coupling
the Monte Carlo particle simulation with Poisson's equation for quasi-static problems,
and full Maxwell's equations for electro-optic devices.

I. Introduction

PMC-3D is a parallel three dimensional (3-D) Monte Carlo device simulator written for
multiprocessors[l][2]. The parallel algorithm is an extension of the standard Monte Carlo
device simulation model in 3D in which the particle dynamics generated from the stochas-
tic Monte Carlo method are solved simultaneously with the appropriate set of field equa-
tions on a 3D mesh using finite differences. For quasi-static problems such as the behavior
of a three terminal MESFET device, Poisson's equation is solved for the potential and
corresponding electric field used to drive the particle dynamics. Both the Poisson solver
and the Monte Carlo phase are parallelized due to the large computational requirements
of solving Poisson's on a 3D grid. The implementation of the Poisson solver is based on
an iterative method that uses an odd/even ordering with Chebyshev acceleration. The
code was developed both for a distributed memory 1024 node nCUBE multicomputer and
a 4-node shared memory Ardent Titan multiprocessor.

H. Parallel Algorithm

In the distributed memory implementation, the spatial domain of the device is subdivided
onto separate processors according to a recursive bisection algorithm. Figure 1 shows the
decomposition of the MESFET problem for a simple four processor case. The particles
and mesh associated with each of the subregions is mapped onto separate processors.
The choice of spatial domain size is chosen to roughly balance the numnber of particles per
processor, and adjusts itself throughout the simulation to maintain a balanced processor
load. The code is written in C, and contains compiler directives to distribute portions of
the code on various processors.

The parallel to sequential speedup was characterized in several ways shown in Fig. 2.
The speedups for the fixed size and scaled size problem were measured for both the
Poisson phase and the Monte Carlo phase of the code on a 1024 nCUBE hypercube
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Figure 1: Mapping onto a 4 processor hypercube and external interaction region

with dynamical load balancing turned off. For the fully scaled problem, an efficiency of
69.8% was obtained for 512 processors compared to the ideal (Amdahl's law) speedup.
An additional increase of 8% was obtained using dynamical load balancing. In the fully
scaled case, several million grid points, and several million particles were simulated.

III. Electromagnetic Modeling

For high frequency operation or for electro-optic devices, Poisson's equation is insufficient
to correctly characterize the dynamical behavior of the system, and thus PMC-3D has
been extended to include full electromagnetic solutions of Maxwell's equations coupled
with the particle transport models. The Lorentz force equation which determines the
carrier momentum between collisions, includes the effect of the magnetic and electric
fields obtained from the time-dependent solution of Maxwell's equations, and is given by

F=hi = q(E+vxB)

The standard finite difference/time domain (FD/TD) formulation of the field-equations
is used to compute the time-evolving quantities E,H and J with p(z, y, z, t) being the
source term corresponding to the charges present as described by Connolly et al. [3].
The algorithm involves two grids in space (for E and H fields) displaced by half mesh
increments in the three spatial directions. Every component of E (or H) is computed
at a given time, using the four adjacent values of H (or E) that contribute to the loop
integral, that results from the Maxwell's curl equations. In addition, the E and H fields
are computed at time instants differing by a half time step, amounting to a leapfrog
method of computing the time evolution of the field quantities.
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Figure 2: Parallel to sequential speedups of PMC-3D

The current density term J is central to the feedback that exists between the Monte
Carlo part and the field computations. It is computed once every timestep at every grid
point by summing the weighted velocities of the particles in the ensemble that lie within
a unit cell volume about the grid point, and is given as

J(i,j, k) = a. ( E

where S. and v, refer respectively to the charge and velocity of the nth particle associated
with the grid point [3].

The electric fields are initialized to the values obtained using a one-time solution of
Poisson's solution, corresponding to the applied DC bias voltages on the strip line, while
the magnetic fields are assumed to be zero. Dirichlet boundary conditions are imposed
on the metal-semiconductor boundaries as well as on all the conducting walls. Some
preliminary results have also been obtained by imposing Neumann boundary conditions
at the semiconductor-air interfaces.

The FD/TD algorithm essentially requires the solution of an identical set of difference
equations at every grid point and hence is ideally suited for parallel implementation. In
addition to updating the electric and - netic fields of the grid points belonging to the
subgrid mapped to its local memory, every processor also needs to communicate with its
neighboring processors via message passing to obtain the electric or magnetic field values
that may be required in the computation of fields along the boundaries of subgrids.

The program flow during a typical timestep in each processor starts off with the
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computation of electric fields at time t. (after computing the current density vector J
at each grid point at time t.), followed by evolution of the particles in momentum and
real space for half a timestep. After computing the magnetic fields at time t, + 2 using
the electric field values at t,, the ensemble is allowed to evolve for another half timestep,
thereby completing one timestep of Monte Carlo particle evolution.

One such structure that was modeled is the photoconductive switch [4][5J shown in

Fig. 3. As shown there, a femtosecond laser pulse is used to generate electron hole pairs

Figure 3: Experimental configuration of photoconductive switching

between two DC biased coplanar striplines on a GaAs bulk or superlattice substrate. The
transient dynamical response of the electrons and holes as they accelerate in opposite
directions induces a subpicosecond time scale transient electrical pulse in the coplanar
waveguide which propagates down the stripline and is subsequently detected at a different

point. Through this technique, ultra-short time scale electrical pulses may be generated
and detected optically. The gap separating the microetrip lines is 10 pm, while the strips
are 2pm wide. The GaAs semiconducting layer is 1.2 pm thick, and 15gsm long along the
z-direction. A 20 femtosecond laser pulse with an energy of 1.55 eV is assumed with a
spatial width of 21&m.

Figure 4 shows the simulated particle current for a fairly low (peak) injection density of
I x 1015 /cm 3 . The results obtained from using FD/TD solutions of Maxwell's equations as
well as the case for which only the Poisson's equation was solved for updating the fields,
are shown for comparison. It is seen that there is a reasonable qualitative agreement
at low density between the quasi-static solution and the more complete model where
velocity overshoot is directly observed. As the density is increased, the perturbation of

the DC electric fields due to the higher density of the moving charges results in significant
modification of the time dependent magnetic and electric fields. At very high densities,
velocity overshoot is barely observed, with additional effects due to reflections of the
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Figure 4: Simulated particle current for N, = I x 1015/cm 3

electromagnetic fields from the boundary walls coming into play. Comparison of the
effects of absorbing versus reflecting boundary conditions are currently being studied.
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Abstract
In this paper two unified, scalable and transportable parallel approaches to the
numerical simulation of semiconductor devices are presented: Concurrent Device
Simulation (CDS), and Spatial Device Decomposition (SDD). Both approaches have
been developed and tested on the Parsytec Supercluster Model 64 which is a medium
size transputer system. A series of examples illustrate the application of the developed
parallel simulation tools.

I. Introduction

The rapid progress in device technology, which made possible the fabrication of nanometer
scale band engineered structures [1], is now having a considerable impact on device simulation.
New physical phenomena such as carrier heating, ballistic transport and quantisation govern the
behaviour of nano-scale devices [2] and require more complex and expensive models for
simulation. For nano-structure devices, full 3D simulation has becoming a necessity. The need
for super computer power often restricts both the complexity of physical models involved in
device simulation programs and their widespread application. In the foreseeable future, a
significant low-cost improvement in computing performance will only be available through
Multiple Pistruction Multiple Data (MIMD) systems where necessary speed-up derives from the
use of parallel processors sharing a large distributed memory. Hence the parallel
implementation of device simulation codes has become essential [3]. Such fast parallel codes
could be used for real device optimisation, sensitivity analysis and yield prediction in both
research and industry. However, to be of practical use, parallel device simulation programs
must be unified, scalable and portable.

We report on two parallel approaches to numerical simulation of semiconductor devices,
developed in the Nanoelectronic Research Centre at Glasgow University: Concurrent Device
Simulation (CDS), and Spatial Device Decomposition (SDD). Both approaches are
implemented on the departmental transputer system - the Parsytec Supercluster Model 64 -
which is a medium class MIMD system. It consist of 64 electronically reconfigurable T800
transputers with 4MB of local memory per processor.

IL Concurrent Device Simulation

Any practical simulation run can cover a large matrix of input data parameters from bias points
to details of device design such as gate length, vertical layer structure, doping distribution,
recess shape etc. A simple but effective form of parallel device simulation is to run several
copies of the serial simulation code concurrently, implementing Single Program Multiple Data
(SPMD) computational model [4]. To this end a fileserver has been designed to pass input data
sets to a pipeline of processors running our serial H2F simulator [5].

The fileserver is split into two parts: the server which is system dependent and the harness
which is application dependent. The server runs on a simple pipeline of processors (fig. 1).
First it runs a pre-processing routine. Then it collects input data packets from a send-data
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routine. passes them to a free processor on which a process-data routine (the simulator H2F in
our case) runs, collects data from the process-data routine and returns them to the master
processor for a receive-data routine. This cycle is repeated until all the data packets have been
processed and then t,. server runs a post-processing routine.

1.4

1.2
ti

1.0

"W. -0.8

copy rn-i 0.4-

"a - - •'"0.2

0.0 .
0 10 20 30 40 50 60 70

Fig. 1 Pipeline fileserver calculating in parallel Fig. 2 Time tN required to pass set of input
an I-V characteristic data to the last processor of an N-

processors pipeline

The server is implemented using a simple set of programs and can easily be adapted for a
number of platforms e.g. a fast serial processor; Inmos transputer boards running 3L
languages; a Parsytec Multicluster 32/Supercluster 64 running Helios/Parix or a Meiko
computing surface of transputers /C40s running CDL. The server links to a harness of five
routines - pre-process, process, post-process, send-data and receive-data which are
independent of the system and completely portable. For long computational jobs the fileserver
has proved superior to conventional farm processing techniques supported by many of the
existing parallel languages because it can be reliably scaled and is not restricted by the platform
dependant variations in buffering systems.

The communication time overhead associated with the fileserver is illustrated in Fig. 2 where
the measured access time to the last processor is plotted as a function of the fileserver length.
Since a single bias point calculation with H2F takes approximately one hour or more, the
communication overhead is negligible. However the average access time can be significantly
reduced on many of the configurable transputer systems if a ternary tree is used instead of a
pipeline. The effectiveness of the CDS when single bias data are calculated on each processor is
also restricted by two other factors. First, because the simulation time for different bias
conditions can vary significantly, the total execution time is determined by the processor with
the worst combination of bias points. Secondly, the techniques of extrapolating the initial guess
from previous solutions is inapplicable. The second disadvantage may be reduced by
calculating sets of bias points on a each processor.

Investigations of the influence of the structure parameters on the device's performance
has proved to be extremely amenable to CDS. Fig. 3 shows a set of I-V characteristics for a
100 nm gate-length 8-doped pseudomorphic HEMT, calculated in parallel with a CDS on 60
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processors, with variable 8-doping and gate length. The estimated speed-up for this particular
simulation is around 30 which reflects approximately 50% efficiency.

Channel length, nm 300 100
12 a VG0 OV 128

10. *VG V 10
8" *V= - 8
6 - 6a VG - "--V 6

-4 -4
2 4x10 12

01 -- , L -1 U 1012, _ 4,-, aaq ~

0 2 3 4 5 0 1 2 3 4 5
Vd IV] Vd, V

12 12
10101 8 .0......-a---..---
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2 2"

0 1 2 3 4 5 0 1 2 3 4 5
Vd v] Vd IV]

Fig. 3 Set of I-V characteristics for 4 different PHEMTs calculated simultaneously
using the CDS approach

I11. Spatial Device Decomposition.

The SDD approach is a powerful method of accelerating a single bias point device simulation
and of overcoming the inherent memory limitation of 3D simulations. The basic idea of
implementing this approach on MIMD is illustrated in Fig. 4 where the spatial device
decomposition of a FET and its corresponding grid partition is sketched.

n otat • ' cap * Actv layer SGat. 0Buffer 0SuotONtO

(a) (h)

Fig. 4 Spatial device decomposition. (a) physical representation (b) grid partitioning
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The solution domain of the device being simulated is spread over a large number of processors
(Fig. 4. (a)). If the solution domain is topological rectangular (as in H2F [5]) the best
configuration is an army of NxM processors. In this case each processor is allocated to the grid
points corresponding to one device's subdomain plus the grid points from the boundary of the
neighbouring processors subdomains (Fig. 4 (b)).
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Fig. 5 Implementation of a black/red SOR Fig. 6 Speed-up of the parallel SOR solver for
solver. Black (u) and red (e) nodes an array and pipeline of 49 processors:
are updated simultaneously - theory, o - measurements
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Fig. 7 Potential distribution normal to the Fig. 8 Potential distribution around two
channel of an IPGT with gate aluminium wires on etched p-Si
isolation created by ion implantation pedestals for design of Coulomb

blockade devices [8]

To ensure portability, our parallel simulation system is divided into two parts: a system
dependent communication harness and a system independent simulation harness. The
developed communication harness for the Parsytec, GARH (General ARray Harness) provides
all global and local communications needed to implementat the device simulation code on an
array of transputers. The grid generation is performed on the 'root' transputer, then the device
is partitioned and distributed over the complete array. All processors perform the data
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initialisation and discretization in parallel. The key point is the parallel solution of the algebraic
system, arising from the discretization of Poisson's and the current continuity equations. For
the discretized Poisson's equation, a black/red SOR solver was implemented (Fig. 5).
Applying a recently developed performance theory for the speed-up of the transputer array
based iterative solvers [6], the experimentally observed and predicted speed-up is given in Fig.
6. This figure clearly indicates that the array implementation minimises the ratio between the
boundary and bulk subdomain grid points and hence the local communications overhead is
superior to the pipeline implementation. The development of a processor array current
continuity solver is in progress.

Two examples of parallel simulations of nanostructure devices, based only on the parallel
solution of Poisson equation are given in Fig. 7 and 8. The first figure represents the potential
distribution normal to the channel of an InPlane Gate Transistor (IPGT) [71 with a gate
isolation created by ion damaging. The second itgure represents the calculation of the capacitive
coupling between two aluminium wires on the top of an etched p-Si substrate to aid the design
of Coulomb blockade devices [8].

IV. Conclusions

Two unified, scalable and portable approaches have been developed for the intensive simulation
of semiconductor devices on medium-sized MIMD systems. The Concurrent Device Simulation
approach is simple to implement but leads to a reasonable efficiency only when numerous sets
of input data are investigated in the process of device design and optimisation. The Spatial
Device Decomposition approach is more complicated but can accelerate a single point
simulation. However, the successful implementation of the second approach depends on the
development of adequate, effective, scalable and portable linear equation solvers capable of
dealing with the difficulties in solving, for example, the discretized current continuity equation.
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Numerical Simulation of a GaAs MESFET Device using Parallel Processing
Techniques with Adaptive Meshing and Dynamic Load Balancing on a
Transputer Network

C& Tsang-Ping, D.M. Banry, CM. Snowden

Department of Electronic & Electrical Engineering, Leeds University, Leeds, LS2 9JT, UK

Summary
A parallel implementation of the numerical simulation of a GaAs MESFET device using the
finite difference discretisation scheme and solved by a point iterative method is presented.
Parallel techniques targeted at Multiple-Instructions Multiple-Data (MIMD) message-passing
distributed memory architectures, in particular, Transputers, are described. Efficient
parallelism is achieved by the geometric decomposition of the problem domain. Issues on the
convergence and efficiency of the solution with novel strategies such as iteration ordering
techniques and communication protocols in a parallel environment are discussed. The parallel
implementation of the adaptive grid refinement also requires load balancing techniques for
optimum efficiency. Performance results of the parallel simulation using these techniques are 4
presented.

1. Introduction

Physical models are now widely used for simulating complex semiconductor devices. The
increasing complexity of the device models requires high performance computers particularly
for interactive device characterisation. With the advent of relatively cheap parallelism in the
form of Transputers [1], a building block for a multiprocessor MLMD Distributed Memory
Parallel System, the computational requirements for fast device characterisation can
theoretically be met. Parallel processing offers attractive advantages such as scalable
performance and superior cost/performance ratio. While parallel hardware is readily available,
there still is a need for robust and efficient parallel software for semiconductor device
simulation.

4

2. The Device Simulation Problem

This work covers the numerical simulation of a typical n-channel Metal Semiconductor Field-
Effect Transistor (MESFET) using a physical modelling approach. A simplified Drift /
Diffusion Transport model with the Scharfetter-Gummel formulation for current density has 4
been used. The numerical solution was achieved using the finite difference discretisation
scheme. The basic semiconductor equations consisting of the closely coupled poisson and
continuity equations are solved by the Gauss-Seidel point iteration method with successive
relaxation for time-dependent solution [2]. An adaptive refinement strategy is implemented for
numerical accuracy and optimising computer resources.
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3. The Parallel Solution - System and Algorithms

The parallel system used consists of an array of 16 TRAnsputer Modules (TRAMs) which
forms a General Purpose MIMD [3] (GP-MIMD) message-passing distributed memory parallel
system. A high level portable language, Parallel ANSI C. was used to code the algorithms.
The device simulation problem has been parallelised using a one dimensional geometric
decomposition [4]. Each processor is assigned a slice of the domain which is stored locally on
each TRAM module's memory (e.g. Figure 1 shows 4 transputer modules and 4 subdomains).
This is easily scalable to n transputers where n is less than the no of grid points horizontally.

Drain Gale Source

IWtKde MESFT Dowan

TRAIA 0 TRAW TRAM?2TA

m~:r MESFET MVEFEI" MESFET ey

Sbdo 0 Subo I Subdoan 2 K11do1an 3
I JJ Ief-

Figure 1. Parallel Decomposition of the Device Simulation Problem

The parallel system configuration of both hardware and software and associated
communication channels is shown in figure 2. The transputers are connected in a ring network
topology. A graphics process enables the real-time visualisation of the solution.

3 0 -3 0 3

D ri 2 1 7N 2 1 2 1 2ý

Tne-2 0 TI 3 TO

1 F 1ane Sn: Slave n
HOST PoOs Traputer GO: so D:vw

Tn: TRAM n

Figure 2. Parallel Hardware and Software Configuration

We now introduce the major overheads in the parallel simulator as opposed to a sequential
implementation. The slave processes are controlled via channels I & 2 (control protocol) by a
driver process. The latter instructs the slaves to perform specific task and monitors the state of
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the simulation such as the global convergence of the iterative solvers and refinement decisions.
The five-point formula used for solving the poisson and continuity equations requires four
neighbouring data. However, at subdomain boundaries, a column of node data is missing and
has to be transmitted via channels 0 & 3 (data exchange protocol).

The decomposition of the MESFET domain introduces convergence and stability problems of
the numerical solution. For the poisson and continuity iterative solver, the update ordering is
modified when domain is partitioned. A novel red/black checker-board updating technique
named as the RB SOR ID [5] partitioning method that ensures the stability and provides
optimal convergence of the numerical solution was developed.

Synchwonous Asynchronous

Process A process a8rcs X -_i hcs
CA

w ato Rem bonm~n A

H 
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E E
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Figure 3. Data Exchange Communication Protocols

Data exchange communication protocol which ensures data consistency across boundaries can
broadly be categorised as synchronous and asynchronous [6]. Figure 3 depicts the two types
of protocols implemented. Synchronous communication ensures that iteration processes are
synchronised and boundary data are updated in a orderly fashion. Asynchronous
communications, on the other hand, enable the communication processes (TXP & RXP) to be
completely independent of the computation process (ITP). This protocol provides less
synchronisation overheads but data consistency at each iteration cannot be predicted.

4. Parallel Adaptive Meshing and Load Balancing

A refinement algorithm based on the potential difference criteria was implemented on the
parallel simulator. The dynamic refinement of the domain results in an imbalance of work
loads on each processor. Load balancing techniques based on a quasi-dynamic [(7 strategy
were designed to achieve optimum performance. Figure 4 shows the allocation of the sub-
domains when a network of 4 transputers has been load-balanced.

Drin 0V Gte -1V Source 3V

SIMO SIlRI Seve 2 Sim 3

Figure 4. Adaptive meshing and Load Balancing
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5. Results and Performance

These results and performance data were obtained from the parallel system by simulating a
GaAsMESFETwith 0. 15pgm active channel (1.5e23 m-3) and 0.551gm gate length using dynamic
adaptive grid meshing. The solution for the electron concentration profile is shown in figure 5
for a bias condition shown in figure 4.

3.O,,03"

Figure 5. Electron Concentration Profile for GaAs MESFET

An overview of the overall performance of the parallel system is shown in figure 6. The drop
in speed up is attributed to the communication overheads in the parallel system. The graph
shows the parallel performance of the solution for a fixed grid of 128x32. A speed increase of
up to a factor of 12.5 for synchronous protocol on a 16 transputer network has been achieved.
For the asynchronous protocol depicted in figure 3, lower performance is observed due to
excessive communication overheads.
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Figure 6. Overall Parallel Performance Results for fixed grid

Figure 7 shows the parallel performance for the parallel adaptive meshing algorithm of the
GaAs MESFET device (from figure 4 & 5) starting with a grid of 41 x 10 to 62x 14 over a time
of 50fs Due to the small grid size, the communication overheads are significant leading to
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decreasing performance as more processors are used. The importance of dynamic load

balancing is clearly shown from these results (using synchronous and RB SOR ID techniques).

16
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2

0

0 4 a 12 Is

Transputers
Figure 7. Overall Parallel Performance Resuts for Adaptive Grid

6. Conclusion

A parallel numerical solver for an iterative GaAs MESFET device solver has been presented.
Geometric domain decomposition proves to be the natural way of parallelising the simulation
enabling a logical map on transputer-based systems. Combined with Parallel C, this provides a
good platform for developing parallel algorithms. However the overall code complexity and
size increases in the parallel implementation. The convergence and stability behaviour of the
solution is also found to be affected in a parallel environment. This led to the development of
suitable iteration update ordering techniques which ensure fast convergence and stability of the
solution. Communication overheads remain the major factor limiting the efficiency of the
parallel simulator. The parallel grid refinement provided very efficient computation, with the
optimum grid structure automatically generated but requires load balancing techniques to
improve parallel efficiency. Overall, the performance of the parallel solver is scalable for
increasing problem size and numerical complexity. It is envisaged that the parallel techniques
developed will have a wide application on exceptionally computer intensive semiconductor
device simulation as well as on fast/real-time device characterisation.
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The Implementation and Speed-up of Coloured SOR Methods for Solving
the 3D Poisson Equation on an Array of Transputers
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Abstract
In this paper we present four different SOR variants for solving the 3D Poisson equation on
an array of transputers. The performance of all variants has been tested and compared in
terms of number of iterations and global computation time for different configurations of the
transputer system. The parallel performance of the algorithms has also been evaluated and
compared to a theoretical speed-up model.

I. Introduction

The realistic semiconductor device simulation (both classical, Monte Carlo or quantum
mechanical) in many cases requires a 3D solution of the Poisson equation and leads to
enormous problem sizes [1]. The single processor implementation of the corresponding 3D
codes is limited by both the processor speed and the huge memory-access bottleneck. In the
foreseeable future a significant low cost improvement in computer performance will only be
available through Multiple Instruction Multiple Data (MIMD) systems (many of them
transputer based), for which the necessary speed-up derives from the use of parallel
processors sharing a large distributed memory. The point and block Successive Over
Relaxation (SOR) methods are promising candidates for 3D parallel implementation on such
computers. Although the recursive character of the original SOR method seems to be a
serious impediment [2], for a large class of linear systems arising from finite difference, and
in particular cases [3] from finite element approximations of the Poisson equation, the
multicolour ordering of the grid points leads to easily parallelizable versions of the SOR
method [4,5].
Here we present a systematic approach to the parallel implementation of scalable point and
block black/red 3D SOR Poisson solvers on a 2D arrays of transputers for the purposes of
semiconductor device simulation. Utilising the power and the flexibility of the Parsytec
Supercluster Model 64 a wide range of experiments have been made both to compare the
performance of the different SOR variants and to choose the optimum 2D transputer
configuration for mapping 3D problems. The recently developed detailed performance theory
[61 has been applied to underpin the experimental solver design.

IL Model Problem and Partition

The Poisson equation used in the semiconductor device simulations
aX2 0+a2+a2• -E- (1)

may be nonlinear or linear, depending on whether the charge density p is a function of the
electrostatic potential TP or not. In the drift-diffusion and the hydrodynamic simulation
approaches it is mainly used in a nonlinear form . In Monte Carlo and quantum mechanical
simulation however it is usually enough to solve the linear Poisson equation.
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In this study for simplicity and clarity we consider the linear 3D Poisson equation in a unit
cube 0 with Dirichlet boundary conditions. A uniform grid is used to discretize the region Q

into Ob. The approximation of the second-order derivatives by the second-order accurate
central differences on tOb leads to a set of nxnxn algebraic equations

+ + + + + 6- = bOd.-k (2)

£

for ijk = 23, ...n- I, where n is the number of points on a side of 11h, and b is a coefficient

depending on n.. In most of the following experiments W was set to one, p was set to zero and

the initial conditions were • ='O.

Slice (0S)

Fig. 1 Mapping of a 3D semiconductor device Fig. 2 Partition of a 2D discretization grid on
simulation domain on an 2D array of a 2D array of transputers
transputers

Although it is intuitively clear that the best environment for solving topologically rectangular
3D problems is a 3D array of processors, we are restrict to a 2D array of NxM transputers.
This reflects the connectivity of transputers, which have only four links, and offers a simpleway of mapping a topologically rectangular 3D grid, where the overlap of subdomain
boundaries is essential. The transputers have a natural ordering p = 1,2,...N and q = 12..
Fig. 1. One additional 'root' transputer performs all management and synchronisation. The
grid is partitioned into NxM subdomains along two of the spatial dimensions (ii)3 and each of
the subdomains involves all corresponding points in the third dimension k.. Examples of slice
(lxMf), rectangular (NxM) and square (NxN) partitions are given in Fig. 2. A universal
communication harness GARH [6] supports all necessary global and local communications.

In. Back/Red SOR Variants
The implementation of the Point SOR method with Natural ordering in aj directions on eachprocessor may in many cases cause divergence for problems which behave well in a serialimplementation (71. This may be avoided if a black/red SOR variant is considered. In thisapproach each partition sub domain Lt• is decomposed into two further subdomains - black
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2
j, The nodes in the black and red subdomains are updated

simultaneously and the overlapping boundaries are exchanged before each updating.

When a 2D array of processors is used, it is enough to apply the black/red ordering only in the
ij plane which leaves some degree of freedom in the k direction. To explore this freedom we
consider four different parallel SOR schemes namely:

PSORBRUNk - Point SOR with Black/Red ordering in ij direction and Natural ordering in k
direction. (Fig. 3 a)

PSORBRUk - Point SOR with Black/Red ordering in all three directions (Fig. 3 b).

PSORBRIjAk - Point SOR with Black/Red ordering in ij direction and Alternating directions
in k direction.

BSORBRTk - Block SOR with Black/Red ordering in ij direction and tridiagonal equations
solution in k direction.

W La Fig. 3 Black/red ordering in the 3D case.
(a) full black/red ordering (b)
black/red ordering only in ij plane

Table 1
Nau•al

Mesh size n ordering thory PSORBR PSORBRN PSORBRA PSORBRT
10 16 15 15 15 11
20 32 32 32 30 22
30 47 47 47 43 33
40 62 61 61 56 41
50 76 74 74 70 51

Table 2
Mesh size n PSORBR PSORBRN PSORBRN PSORBRA BSORBRT BSORBRT

with We with o W W with we with 0*, with We
10 0.087 0.093 0.087 0.087 0.106 0.077
20 0.635 0.635 0.635 0.595 0.677 0.552
30 2.184 2.184 2.184 1.998 2.346 1.985
40 5.450 5.539 5.450 5.003 5.888 4.828
50 11.278 11.582 11.278 10.668 12.163 10.169

The main disadvantage of the black/red ordering with all variants described above is that the
natural ordering SOR theory [7] does not hold, which makes it difficult to estimate the

optimum relaxation coefficient (o a priory. In order to compare more precisely our four

different SOR variants, experimental optimum values for We have been found by using a one
dimensional minimum search based on the Golden Section method. In Table 1 the numbers of
iterations providing an accuracy 8=0.001 are given for both oe and the theoretically predicted
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relaxation coefficients awb [7]. As can be expected the block variant BSORBRT leads to a
significant reduction in the number of iterations but at the expenses of an increasing number
of calculations per grid point. This point becomes clear from Table. 2 where the execution
times in seconds are compared when all 64 transputers of a Parsytec Super Cluster were used,
configured in an 8x8 array.

IV Speed-up analysis

To evaluate the parallel potential of the considered SOR variant and the optimal processor
configuration we use the relative speed-up defined as the ratio between execution times on an
array of processor and the execution time on a single processor. It is obvious that according to
this definition the maximal available speed-up is equal to the number of processors on which
the algorithm runs. The speed-up model developed in [6] for scalable 2D linear solvers
implemented on an array of transputers was extended to the 3D case and takes into account
the details of the solution domain partition, all global and local communication overheads and
the computation time in the linear and nonlinear case. All parameters of the performance
theory have been extracted from independent measurements.

50o 200o
8x8 . 8x8 calculculation

40- 150 Wx boundary exchange

CL 6x4~30-C
a. E100-

10

50
10 0 -

10 20 30 40 50 0 10 20 30 40 50
Problem size n Problem size

Fig. 4 Speed-up as a function of the problem Fig. 5 Balance between calculation time and
size for different configurations of 64 local communication time in the case
transputers (PSORBRN variant) of 8x8 transputers (PSORBRN)

The measured and calculated speed-up for three different configurations of 64 transputers is
given in Fig. 4 for the PSORBRN variant as a function of the problem size. The picture shows
very good agreement between the measured and predicted performance even in the finest
details. The square partition which minimises the local communications shows the best
performance for problem sizes n which are divisible by the transputer array size. Fig. 5 gives
an idea for the balance between the local communication and calculation time for a single
iteration in the 8x8 case. Finally Fig. 8 illustrates how the performance theory may be used to
estimate the expected speed up for a particular problem size (n=50) mapped on a large
number of transputers. It is clear that for large transputer systems the BSORBRT variant is
superior to all other variants because of the higher calculations/ communications ratio.
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V. Conclusions

Four variants of a black/red SOR method for solving the 3D Poisson equation on array of
transputers have been implemented and tested. The behaviour of PSORBR and PSORBRN
variants are very similar in terms of iterations required to achieve a certain accuracy. The
third point variant PSORBRA slightly reduces the number of iterations. The block
BSORBRT variant reduces the number of iteration by more than 25% but at the expense of a
larger calculation time per iteration. Although for a medium size transputer system all four
variants are very similar in terms of global computational time, our speed-up analysis shows
that on a large array of transputers the advantages of BSORBRT will become more
pronounced.
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First Principles Calculation of Electron-Phonon

Scattering Rates in Si

P. D. Yoder

Beckman Institute for Advanced Science and Technology, and
Coordinated Science Laboratory, Urbana, IL 61801 USA

Abstract

A first principles LDA approach based on the Harris functional ansatz is used to in-
vestigate the electron-phonon interaction in silicon, within the rigid ion approximation.
Electron-phonon matrix elements for transitions between selected electronic states are
calculated, and used to generate band- and wavevector-dependent scattering rates. These
scattering rates are generally larger than those calculated with other methods, and show
significant anisotropy.

1. Introduction

The concept of applying pseudopotential, to the analysis of electron-phonon interac-
tions in solids [1] has served as an invaluable tool in our theoretical understanding of
the proem. Without pseudopotentials, one currently either relies on a restricted scope
of measurable information, or is relegated to phenomenology. Primarily for purposes of
simplicity, most investigations of the electron-phonon interaction in semiconductors have
made use of empirical pseudopotentials [2-6], mostly in the local approximation [2-5].
As the true crystalline pseudopotential is necessarily nonlocal, some authors have added
correction terms [5,6]. While useful in gaining insight, these empirical approaches suffer
from their sensitivity to several adjustable parameters as some authors have noted [5, 7].
For example, before any electron-phonon analysis takes place, all of the local form Nctors
must be treated as free parameters and adjusted such that the resulting bandstructure
matches experimental values at a suitably defined set of points in the Brillouin zone [8].
Additionally, due to the nature of the electron-phonon interaction potential, one must
still choose among various interpolation and extrapolation schemes between and beyond
these discrete adjustable form factors in reciprocal space. Of particular concern is the
finding that the most physically meaningful choice of extrapolation criteria do not yield
the best results [5]. For these and other reasons, several authors have chosen an alterna-
tive approach.

It has long been known [9] that electron-phonon matrix elements calculated using pseu-
dopotentials can in principle be just as accurate as those cal,:i ,ted using the true poten-
tial, as long as the pseudopotentials are calculated directly from the true potential. This
has led to several ab initio investigations based on density functional theory [10, 11, 12] in
the local density approximation (LDA). Such self-consistent Kohn-Sham (K-S) type cal-
culations quite naturally avoid all of the difficulties of the empirical approach mentioned
above. Furthermore, the self-consistent LDA calculations implicitly include the effects of
atomic polarization, which is impossible to include using the empirical pseudopotenials.
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With all of these benefits, the K-S method has the drawback that modem computational
resources limit its application to a small set of high-symmetry transitions due to the re-
quirement of self-consistency.

An alternative approach [7] which uses the ab initio pseudopotentials yet avoids the prob-
lem of self-consistency involves an approximation to the change in crystalline charge den-
sity when the atoms are displaced. This approximation, based on the Harris functional
ansatz (131, is to replace the self-consistent K-S potential with one derived from overlap-
ping atomic charge densities. The benefit of this approach is the flexibility to calculate
electron-phonon matrix elements for arbitrary transitions, yet it remains a first-principles
theory. In the following sections, the method is briefly described, and then used to gen-
erate band- and wavevector-dependent scattering rates for silicon.

EI. The Model

One may write a crystalline density functional non-interacting Hamiltonian using pseu-
dopotentials as

2 - -+ AV,,, j(r,r') + V,.j.(r) + VH[n(r)] + V.[n(r)] + V.[n(r)], (1)

where Vo.,aoc(r) is the local crystalline ionic pseudopotential, AV,,,.(r, r) is the nonlo-
cal 1-dependent ionic crystalline pseudopotential, and VH[n(r)] is the Hartree potential.
V.[n(r)] and V.[n(r)] are functional derivatives of the exchange and correlation energies
with respect to pseudocharge density. Single electron wavefunctions are expanded in a
plane wave basis as 1

=k.(t) / Zk,.(G)es(G+k)'r, (2)
VN;G

and matrix elements of this pseudopotential Hamiltonian are taken with respect to these
basis functions leading to the familiar secular equation

det 1('(k + G')2 - Ek,U)6G,,G + Vp.,tot(k + G, k + G') 0 (3)

which defines the eigen-energies and wavefunctions.

As is usual, the bare ionic potential (nucleus with core electrons) is expanded in a series
under the assumption of small displacements,

Vb(r) E ' [Vb(r - Rj - r.) + b'Rj,. • VVb*(r -- R - r.) +..],(4)

ignoring multi-phonon processes [14] and any polarization of the bare ions themselves
under displacement. Since the first order term is much smaller than the zero order term,
the electron-phonon interaction is treated perturbatively, with the screened.first order
term giping rise to transitions between eigenstates of the screened zero order term. In the
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Fig. 1. Total electron-phonon scattering rate as a function of energy. Rates are into
states in the first 4 conduction bands out of the first two.

adiabatic approximation, this is expressed as:

with transform [14]

Vi-pI,i(q + G) = c-'-(q + G, q + G'; w = 0)V.Izp,,e_(q + G'), (6)
G,

defining
V•_, (r) = b . VV•(r - Ri - r.) (7)

"j'a
Under the assumption that the atomic pseudocharge density moves rigidly with the atoms
of the crystal lattice under displacement, a linearized interaction potential reduces eq'n
(5) to the inner product of the ionic displacement and the gradient of the screened ionic
potential. In this case, the calculation of electron-phonon matrix elements proceeds closely
along the lines of the standard rigid ion theory, with only minor modification.

IM. Discussion

The method of [15] was used in conjunction with the Fermi Golden Rule and a realistic
phonon dispersion to generate band- and wavevector-dependent electron-phonon scatter-
ing rates. Figure 1 shows the total energy-dependent scattering rate, with the density-
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of-states included as a reference. The scattering rate is found to be larger than that of
the empirical method [5], especially at high energies. As an indication of the anisotropy
of these rates, figure 2 depicts an energy isoe ,rface in the first conduction band, shaded
proportionally to total rate at each point in the Brillouin zone.

Fig. 2. Surfaces of constant energy (=1.79 eV), shaded by electron-phonon scattering
rate in the lower half of the Brillouin zone. On these surfaces, the scattering rate varies
by a factor of 3.94, indicating significant anisotropy.
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A CPA Calculation for Disorder-Induced Intervafey Scattering In AIGaAs

Selim F. Oener and D. K Ferty
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Abstract
Disorder-induced scattering due to tie random distribution of atomic species of the constituent
semiconductors in alloys can lead to intervalley scattering transitions. A method based on a
wavevector dependant formulation of the Coherent Potential Approximation is used to
calculate the intervalley scattering potentials.

I Introduction

Recent experimental work of Kalt et al. [ 1 ] indicate that disorder scattering can have large
wavevector components of the scattering potential, which may give rise to intervalley
scattering. Grein et al. [2] also calculated the lifetime broadenings of electrons due to
disorder-induced scattering from the r valley to the side valleys using an empirical
pseudopotenial fmulation, and concluded that this is the dominant scatterng process for
electrons in the r valley minimum of AIGaAs with composition x > 0.4. In this study, we
derive a general formulation for treating diagonal srd-induced intervalley scattering
transitions due to diagonal disorder based on the Coherent Potential Approximation (CPA).
Previous formulations of the CPA for application to alloy bandstucure average out the self-
energy over the entire Brillouin zone. In this work, the wavevector dependance of the
relevant quantities are retained. The scattering potential Vs8 (q), which causes a scattering
transition with wavevector q, is found by calculating the imaginary part of the CPA self-
energy at the q point of interest

H Coherent Potential Approximation

The coherent potential approximation method has been used previously to treat the electronic
structure of alloys [3-5]. The exact Hamiltonian for an alloy is written as the sum of an ordered
virtual crystal Hamiltonian, whose solution is known, and a random potential due to the
random distribution of atoms:

Hanwy = HE + Vr mn, (1)

Vmdom - 7 (vr - va).- (2)
r

The random pat of the crystal potential is replaced with an effective potential (self-energy) in
the CPA approximation, which is described by an effective Hamiltomian

Heft= H0 + Z(k). (3)

From the the iterative solution of the Dyson's equation relating the Green's functions for the
exact alloy Hamiltonian and the effective Hamiltonian
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GaWW - CAW + GON(V,8, 0 - Z aft0 , (4)

the aomic sting mauix T, can be defined as

TM-V-Z(5T fi: (5)

I- (V-POW

which ransforms (4) into the form

GaY M + G 4fT(r . (6)

Taking the configuration average of both sides,

<G -y> = G + G.ff >efG , (7)

results in a self-consistency relatin for the self-energy Z(k). This leads to the condition that
the configumron average of the atomic scattering matrix vanish at every point in the Brillouin
zone:

x + (1-x) Vg~)- ) = 0 (8)
I - NVA) - Z•k))Gd(k) I - (VB(k) - Y*))Gft( k)

VA(k) and VB(k) are the anti-bonding potentials of the A and B semiconductors, calculated
from the conduction band energy solutions, and are referenced with respect to the vacuum
level Chen et at. [3] use an approxim tion by which the effective Green's function, and the
self-energy term are diagonalized. The effective Green's function is of the form of Bloch
sums, which are valid for tight-binding, or bond-orbital basis functions and result in the
cancellation of terms in the Brillouin zone integration. Then, the effective Green's function is
of the form

G1) qk (9)
k' Ek - Ele-At

By discretizing the Brillouin zone into N points., we obtain an NkN system of coupled nonlinear
equations for Ek to be solved self-consistantly. Through a local k approximation, we first
calculate the density of states only at the k-point of interest, through which the nonlinear
system of equations can be decoupled. Rewriting the effective Green's function as

Geff(k)=- •+ •1 1 (10)Zk It4- AV,- 4'

the summation tem is neglected initially. We have checked that this approximation is valid,
and find that the first term is about five times larger than the summation term. The resultant
self energies k, from the solution of (8) we fed back into the Green's function expression of
(9) and the itemaion is performed until self-consistency is reached. The self-energies do not
change appreciably after the first iteration.
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Figure 1. CPA Self-E in the Brilicuin zone for x = 0.2 and 0.6 in AIGaAs. Circles and
diamonds are the real and imaginary components of the self-energy for x - 0.2, and the squares
and triangles are the real and imaginary self-energies for x = 0.6.

Using the spas* se I-epra tight-binding method to calculate the eigenenergies, the
scalar equations resulting from the above approximations are solved using a Newton-Raphson
iteration for 1(k) at the discretized points in the irreducible 1/48-th wedge of the Brillouin
zone. The results for the real dimaninam p of the self-energy we shown in Fig. 1
for two different compositioms of AIGOaAs. It is s that the rel part of the self-energy, which
is a band-renormalization emr in the virtual crystal p om o, results in a correctio to the
band energies whose magnitude is less than 10 meV throughout the Brillouin zone. The
imaginary part is equal to the scattering potential, and shows a structure related to the
symmetry points r, L and X. Between the X and K points, we have a dip in the self-energy,
which is actually a result of the semi-empirical tight binding approximation to the
bandmructure..In an .0.* basis, the energy ba1mhs'ctur between the Xand K points has a
degeneracy point, while in an Empirical Pseudopoential calculation of the band sucture of
AlGaAs, such a degenmrcy point is not seen. The composition dependence of the imaginary
part of the self-energy for the wavevectr components L and X is shown in Fig. 2. Ther is a
marked deviation from a Ix(l-x) type of behaviour, which is expected from a binomially
distributed random atomic energy. Thus, the bowing pam is not a simple scalar quantity.

III Apoklatla=

We apply our disorder-scattering potential results to the simulation of a fem•tosecond time-
resolved pump probe experiment of intervalley scattering in AIO.Ga0.4As by Wang et aL[6].
The intervalley scattering transition is an L-wavevector transition, whose scattering potential is
seen to be 18 meV from Figs. 1 and 2. We include this scattering process in an Ensemble
Monte Carlo simulatio of intervalley scattering in AIGaAs. The dam oints in Fig. 3 we the
X-valley population in arbitrary units. A 400 femouod FWHM, .1 a V e pulse excites
carriers into the L and X valleys (the laser pulse is centerd at t- 1000 fem6nseconds in the
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Figure 2. Imaginary part of the CPA self energy at the L point (dashed line) and the X point
(solid line).

figure). Photo-excited carriers undergo inter- and intra-valley phonon- and disorder-induced
scattering events to pile up at the bottom of the X valley. The population of the X valley is
moniMored by a 500 femtosecond FWHM convolving pulse which causes an infrared ransition
to the X7 valley. Previously, we had reported a parameter fit of the non-polar optical
deformaton potential constant to be DLX - 1.5 ± 0.5 x 109 eVlcm [7]. The results of the
simulation for a value of DLX - 1.5 x 1UP eVcrn per binary alloy mode are shown in Fig. 3 for

e different disorier-induced intervalley scattering potentials. It can be seen that the effect
of including disorder-induced scattering process for L-X intervalley scattering is small.

IV Condusim

Disorder-induced intervalley scattering is investigated using a Coherent Potential
Apnprouiation to model the random potential in the alloy AlGaAs. The imaginary part of the
self-energy correction is responsible for scattering so we can use this self-energy to derive
scattering potentials. In particular, a k-dependant formulation for the self-energy gives us the
disorder potential components directly responsible for the large wavevector scattering
transitions which can result in intervalley transfer. The disorder-induced intervalley scattering

ptnilfor r-x transitions (an x-wavevector) for the experimental case of [1] is found to bie
38meV at composition x - 0.4, somewhat smaller than the value reported (53 meV).

However, this value seems overestimated from the derivation in [1]. Intervalley scattering
between the L and X valleys has only a weak disorder-induced scattering potential. For
AIGaAs with comition x - 0.6, disorder-induced scattering processes for L-X intervalley
saompreng are d with phonon-induced processes.
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Figure3. Effectofdisorder-inducedL-Xinmrvalleyscattering. The dotted line, solid line and
the dashed line are for scattering potentials Vqc(L) = 0, 18 meV and 25 meV respectively. The
diamonds we the data points of Wang at al. [6].
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Steady-State Electron Transport in Silicon Dioxide Employing
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Abstract
A semiclassical Monte Carlo technique is employed to simulate the steady-state electron
transport in silicon dioxide at intermediate and high electric fields. The electronic struc-
ture is modelled by a single parabolic, by a single nonparabolic as well as an isotropic
four-band model. We find that the electronic behavior of silicon dioxide is mainly influ-
enced by a single nonparabolic conduction-band. The injection of electrons into silicon
dioxide is also investigated in order to extract the thermalization length of electronic
carriers.

I. Introduction

Silicon dioxide is of vital interest for "metal oxide semiconductor" (MOS) technology
because of its importance as an insulator for gate electrodes. For "Ultra Large Scale
Integrated" (ULSI) circuits the thickness of the insulating film is only comprised of a few
nanometers, which results (for typical bias voltages) in a normal field approximately of I -
10 megavolts per centimeter (MV/cm). Experimental and theoretical studies give evidence
that material breakdown will not occur under the influence of applied field-strengths as
high as 20 MV/cm [1] [2]. Under these enormous fields, the electronic distribution becomes
unstable if the energy being gained from the field can no longer be given to the lattice.
Three different scattering events are involved to model the transport behavior of electrons
in Si0 2 , namely, polar longitudinal optical (LO) phonons, nonpolar optical and nonpolar
acoustic phonons [1][3][4][5][6][7][8].

II. The Physical Model

In low electron energy levels, polar longitudinal optical phonons are the dominant scat-
tering process in silicon dioxide. The electrons lose a large amount of energy to the lattice
due to a strong interaction of the polar phonon modes via the polarization field of the
ions, but at high and intermediate fields they cannot prevent "velocity runaway" or even
material destruction. Nonpolar acoustic phonons force electrons to scatter and stabilize
the electronic distribution. As electrons reach the threshold for the emission of nonpo-
lar aco, stic phonons, the probability of having Bragg reflections (Umklapp-processes)
increases keeping electronic carriers from gaining more energy from the field [3] [7] [9].
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III. The Transport Model

In this section we briefly describe our Monte Carlo algorithm to solve the Boltzmann
transport equation (BTE). An excellent review on this method is given in [10]. Some minor
improvements and differences of this numerical method will be briefly reported here. The
equation of motion and the duration of free flight are solved simultaneously by employing a
Runge-Kutta algorithm instead of the usual self-scattering scheme. After performing a free
flight the scattering process is randomly chosen according to the partial scattering rates.
If one scattering process is selected the after-scattering state of the electron is calculated.
For nonpolar electron-phonon collisions the polar 8 and azimuthal angle 0 are uniformly
distributed [101, whereas the LO phonons favor large angle scattering. To compute the
polar angle we use a modified rejection technique with a nonconstant enveloping function.
The azimuthal angle of the LO phonons is chosen randomly. Having calculated the state
of the scattered electron we perform another free flight till the maximum number of
scattering events is reached.

IV. Results

To model the band-structure in SiO 2 we implemented an isotropic four-band model with
one nonparabolic (nonparabolicity a) and three parabolic bands [11]

h2 k 2

+(l ae) = 2i--2 for0<k<k,,•, band 1, (1)
I 2k2

S= Eo± h " for 0 < k _< ", band 2,3,4. (2)
2m*

band J m" [m,-] Ie [eV] e2 [eV] I km, [nm-'] multiplicity

1 0.50 0.00 5.52 11.54 6
2 1.34 5.52 9.31 11.54 6
3 1.05 7.00 9.00 7.42 12
4 1.05 9.00 11.00 7.42 12

Table 1. Parameters of the four-band model used

The parameters of the band-structure are summarized in Table 1. The data were extracted
from band calculations of Chelikovsky and Schlfiter [12].

In contrast to the electronic character of bands one and three, the bands two and four
show hole-like behavior. The density of states (figure 1) of one parabolic, one nonparabolic
and the four-band model are compared, whereas the first bands have the same mass. It is
clearly seen for intermediate and high energies that the density of states strongly differs.
The main features of a realistic band-structure with two maxima at 5.5 eV and 9 eV and
one minimum at 7 e V are well reproduced and strongly influence the electronic distribution
at all energies.
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Figure 3. Drift velocity of different band- Figure 4. Mean kinetic energy in d i02 COfn -
structures in Sie2f pare d with the data of Ref. 7.

Figure 2 presents the total scattering rate for a temperature of 300 K and compares it
with a single conduction-band. Nonpolar acoustic phonons set in at about 2.75 e V as the
dominant scattering process (U-process). Compared with one-band models the different
character of the four-band model again results in two maxima and one minimum. The
discontinuity at the peak reflects the intravalley character of U-processes.

The dependence of the drift velocity of electronic carriers in Si02 versus electric field is
plotted in figure 3. It increases till U-processes occur. A parabolic one-band model tends
to lower velocities, whereas nonparabolicity increases the velocity. The split-off between
the nonparabolic band-model and the four-band model is caused by a non-negligible occu-
pancy of the second band at high electric fields. Our data are compared with the results
of Fischetti [7][13].

The energy is plotted in figure 4. We observe that a single nonparabolic conduction-band
and the four-band model do not exhibit any deviation, moreover, they almost demonstrate
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quantitative identical values. Three different techniques have been employed to extract the
energy as a function of the applied electric field, namely the carrier-separation technique,
the electroluminiscence method and finally the vacuum-emission technique [1],[2],[7].

I0 . .... . . . I0

-, C i---G C .ambm am2 MWVji

u-4 -

I 0 4 12 16 20 2 28 32 36 40 o12 16 20 24 21 32 36 40

difac. [am] diane [am)

Figure 5. Spatial energy distribution in Figure 6. Spatial energy distribution in
SiO 2 for electrons injected SiO 2 for electrons injected
with 0. 1 e V. with 1 eV.

In figure 5 we investigate the thermalization length of electrons in SiO 2 employing one
nonparabolic band. Electrons are injected at the left boundary according to an Boltzmann
distribution with an average energy of 0.01 e V. We find that the thermalization length is
dependent on the applied electric field as well as on the energy of the injected electrons. At
low field-strengths te distribution shows that the electrons requires an average distance of
about 30 nm to obtain the mean kinetic energy, whereas at high fields the average distance
to thermalize is obviously lower than 10 nm. If the average energy of the applied field does
not reach the threshold of U-processes the scattering rate is rather low and the mean free
path large. Therefore scattering events are rarely resulting in long thermalization lengths.
For high fields the mean free path is short and U-processes are dominant favoring large-
angle scattering, which thermalize the carriers within few nm.

Figure 6 presents the distribution of electrons in Si0 2 that are injected with 1 e V in
average. Again, we observe that the thermalization length of electrons is dependent on
the electric field, but shorter than for carriers injected with low energy. The average
length for electrons to thermalize is lower than 15 nm. For high fields it is clearly seen
that electrons thermalize within 10 tnm. In contrast to injected electrons with low energy
the probability of suffering U-processes is high leading to a short mean free path and a
short thermalization length.
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New Developments in Monte Carlo Device Simulation
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Abstract
Monte Carlo particle methods have a unique role in semiconductor device simulation, since
they allow one to solve the Boltsmann equation statistically, with the inclusion of many
physical details which cannot yet be included completely in other approaches. Of the main
limiting drawbacks of the technique, memory requirements and computational costs are
much alleviated by the increasing power of computers. The problems due to statistical
noise can in some applications be corrected by ad hoc techniques. This paper briefly
reviews the state-of-the-art of Monte Carlo device simulation and elaborates ou the future
applications of the method.

1. Introduction

Monte Carlo particle uimulation has been a powerful tool for the investigation of transport
in semiconductors for well over twenty years. The evolution of Monte Carlo methods
has been directly influenced by advances in computers, which have made possible the
implementation of more and more refined physical models [1,2]. Originally, applications
were limited to tracking the evolution of a single particle, to obtain steady-state time-
averages of transport parameters. The single particle Monte Carlo technique is adequate
to study bulk semiconductor properties under uniform field conditions, yielding as typical
results the distribution function, average velocity and energy, valley occupation percentage,
and velocity-field characteristics. The single particle mo,- is also adequate to obtain local
information in device structures for which a potential distribution is approximately known.

Transient and selfconsistent simulations were implemented when the memory of com-
puter was increased to allow the simultaneous tracking of thousand of particles. The
so-called ensemble Monte Carlo technique has then made possible a whole new range of
selfconsistent applications which have required the inclusion of methods for the local eval-
uation of electronic forces, e.g. Poisson's equation [3]. The early simulation models have
treated the bandstructure with an analytical parabolic or non-parabolic approximation.
The energy range for hot electron analysis has been considerably extended with the in-
troduction of algorithms which implement numerically a complete bandstructure of the
semiconductor material [2,4]. Initially limited to bulk material and single particle applica-
tions, the full bandstructure Monte Carlo has been extended in recent years to ensemble
selfconsistent applications and can be now run fairly efficiently on workstations t4,51. While
hardware improvements are making Monte Carlo applications more realistic, many efforts
have been devoted to overcome the natural limitations of the technique, to optimize the
algorithms and to take advantage of new hardware capabilities to introduce more advanced
physical models.

The flow-chart of a selfcosasistent Monte Carlo device simulation is relatively simple.
The method uses a time-dependent approach, which besides providing transient results
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may also be run until a steady-state is achieved. The iteration oscillates between a block
which utilizes the information on charge density to evaluate the electrical forces in space,
and a block which tracks the particle movement within a given timestep. The frequency of
forces update is chosen as a trade-off between accuracy of the physics which requires very
frequent force recalculation, and overall efficiency.

The particle movement is divided into two distinct parts: free flight under the influence
of the electrical forces, and scattering events that terminate the flights. The length of the
free flight trajectory is determined statistically, by relating the total scattering probability
rate to a pseudo-random number picked from a uniform sequence generated by the com-
puter. Once the flight is terminated, random number techniques are again used to select
the type of scattering, according to the relative rate strength of the various mechanisms at
that particular energy, and to determine the final state after the scattering event.

The particles are treated as classical objects obeying Newtonian mechanics during the
free flights, and the scattering events are assumed to be instantaneous. Just a few lines
of code are necessary to evaluate the momentum evolution during a timestep, using the
classical law of accelerated motion. In an analytical band formulation, the energy at the
end of the timestep is directly computed by evaluation of a simple formula. In the full
bandstructure formulation, since the energy values are available only on a 3-D grid in
the Brillouin zone of momentum space, the energy at the end of the timestep has to be
evaluated by interpolation. This process is one of the major bottlenecks in the simulation,
and innovative gridding approaches have been recently applied to implement faster energy
evaluation techniques [6].

The weights of the different parts of the code, in terms of the overall CPU time, vary
according to the implementation and running conditions. In most applications, the force
evaluation by solving the Poisson's equation represents only a few percents of the compu-
tation, when it is solved at typical time intervals of 10 fs. However, in some cases (e.g.
high doping) the time between two Poisson solutions must be reduced to 1 fs or less, to
avoid spurious plasma oscillations of the particle gas, and in 2-D or 3-D simulations with
a large number of grid points, such numerical solutions may carry a considerable weight.
When forces are evaluated bu a full molecular dynamics approach, the computational cost
for this may be dominant, although there are multipole techniques which can be utilized
to dramatically reduce the CPU time without sacrificing precision [7,8].

II. Statistical noise

Statistical noise due to the randomness of the events and discreteness of the particles
always affects Monte Carlo simulation results. In many cases, it is sufficient to increase the
number of particles and average in time the ensemble averages, to improve the accuracy
of the collected statistics for various observables. However, there are cases where a mere
increase of the number of samples is not practical. This is typically true in the case of effects
which depend on high energy tails of the distribution function. An example is the injection
of carriers in the oxide of a MOSFET structure. Steady-state parameters like potential
and carrier distribution in the device are not very much affected by these rare events, but
the evaluation of gate currents is exclusively determined by them. It is necessary to assign
different weights to particles in different energy ranges in order to emphasize the statistics
of high energy tails, while preserving the overall physical charge for force evaluation.

If the transient behavior is of interest, it is not possible to perform time averages
and only an increase of the size of the ensemble would improve the statistics, but again,
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this is seldom practical. Small-signal parameters of microwave devices can be determined
for instance by Fourier transform of the transient currents. Deterministic models like
drift-diffusion, which is not affected by statistical noise, are frequently used. They are
also applied to study large-signal transient response of digital circuits. The Monte Carlo
technique can be applied when drift-diffusion fails, provided that integrated quantities,
rather than instantaneous ones, are considered. This is done by extending an idea first
introduced by Hockney and Eastwood [2], where one keeps track of the total charge or
current which transits through contacts. When the transient simulation is carried through
steady-state, it is possible to identify two contributions to the cumulative charge, associated
to the transient and to the steady-state regime [9]. Since the noise fluctuations are not
very large for the time-integrated charge, it is possible to precisely fit in time the transient
contribution with a polynomial or a combination of exponentials. This procedure yields
very smooth curves for the transient currents, which can now be Fourier transformed to
yield the intrinsic small-signal parameters.

MII. Optimization

The core of the Monte Carlo algorithm determines the times of flight t by solving the
integral equation -Inr = f• A(t)dt', where r is a uniform random number between 0 and
1, and A(t) is the total scattering rate which changes in time as the particle momentum
and energy vary under the influence of the fields. The choice of an appropriate solution
is quite important for an efficient algorithm. An important concept is the self-scattering,
a fictitious event which does not affect the electron state when selected. A self-scattering
rate can be adjusted as convenient to facilitate the evaluation of the flight time, since it
does not affect the statical properties of the process. The simplest approach is to add a
self-scattering rate which makes the total rate constant, so that the integral above can be
trivially determined.

A comparison of various techniques can be found in [10]. Self-scattering rates can be
fixed as a function of energy, or can be dynamically adjusted in time along the particle
trajectory. The goal of optimization of this process is to reduce as much as possible the
amount of self-scattering while maintaining but still retaining it to guarantee that the solu-
tion of the integral is always statistically correct, rather than introducing approximations.
The constant time technique [10,11] offers a good trade-off for self-consistent applications.
The simulation time is divided into small constant steps for all the particles, and a self-
scattering rate is adjusted to make the total rate constant in time within that interval. The
integral is solved by adding up trivial contributions, until the equality is satisfied.

As mentioned earlier, the determination of the energy at the end of a timestep is a time
consuming operation in full bandstructure calculations, which can create major bottlenecks.
Optimization can be achieved by using a tetrahedral mesh in momentum space, instead of
a regular grid, arranged so that nodes of a tetrahedron are positioned on adjacent energy
isosurfaces [6]. With these grids, a linear expression can be used to determine directly the
energy for given momentum coordinates, with precision controllable by adapting the grid
locally. While the construction of this algorithm involves a considerable initial develop-
ment cost, this technique promises to be a breakthrough which should make the full band
approaches not more expensive than analytical band algorithms.

IV. Supercomputation
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The advent of supercomputers has offered new opportunities to improve the performance of
Monte Carlo codes and increase the size of the problems to be solved. The particle transport
has an inherent parallel behavior which can be exploited, but the main obstacle is the fact
that the histories of different particles can be very different due to the randomness of the
processes, and such a difference can be quite emphasized in the case of sharply nonuniform
structures.

Vectorizstion techniques can be very effective for bulk analysis, since it is sufficient to
follow particles from one scattering event to another in parallel. The particle histories are
equalized by sacrificing synchronism, which is not necessary for averaging. Synchronism
must be maintained for self-consistent algorithms, because forces must be evaluated at
specified intervals. Applications using an ensemble constant time approach for the flight
time evaluation, yield a vectorization speed-up between 3-5 on a CRAY Y-MP supercom-
puter [11], where the maximum possible speed-up is about 10. Reports by several groups
indicate similar speed-up for different Monte Carlo implementations. Comparisons in this
area are extremely difficult, since when the efficiency of a code is improved, the achievable
vectorization speed-up tends to decrease.

Parallelization can also be very advantageous for bulk calculations, since the particles
are substantially independent. For more complicated self-consistent models, performance
depends on the actual architecture of the hardware and on the strategy used to balance
the load on the processors. Work in this area is still largely experimental, reflecting the
immaturity of parallel computers and compilers. Parallelization is particularly appealing for
3-D simulation, because realistic applications require a very large number of particles [12].
Balancing of the load between processors is very important, because for massively parallel
applications even a small percentage of non-parallelizable code may make the computation
inefficient.

The future evolution of parallel architectures will have an important influence on Monte
Carlo applications. This is particularly true for the most advanced applications which
require the storage of large tables. The most memory intensive model is at the top of
the hierarchy, where tables for the full bandstructure and momentum-dependent scattering
rates must be stored and need to be equally accessible by all the processors. The information
is only read by the processors during the simulation, since these tables are not changed.
Therefore, for efficiency, such tables should reside in a shared memory region which can
be quickly accessed by all nodes with uniform times, rather than being distributed in local
memory areas appended to the processors or being completely copied in each of these areas,
to limit storage requirements. The remaining compelling memory requirements are related
to particle attributes, like position and momentum, which are continuously updated, and
position dependent data (charge, fields) for large grids, particularly in 3-D. The main
issue is to efficiently handle the communication between blocks of distributed memory. A
logical storage scheme, in the case of distributed memory, is to map particles and grid
nodes of domain subregions onto separate processors, trying to balance the number of
particles per processor, adaptively throughout the simulation. As particles cross boundaries
between subregions, they should be reassigned to new processors. For the determination
of charge on grid nodes and the subsequent solution of Poisson equation, a small amount
of communication is necessary between processors corresponding to physically contiguous
regions. Much more challenging is the implementation of molecular dynamics, where in
principle all processors need to communicate with each other. The optimal solution for a
Monte Carlo code would be to have only shared memory available. In such a way it would
be possible to load particles on fixed processors, regardless of position. Provided that each
single processor can address a large shared memory necessary for the applications, still
great challenges remain in designing system software and compilers for such a system.
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V. Force Evaluation

The numerical solution of Poisson's equation only provides forces in a quasistatic approx-
imation. In some applications this is not sufficient. It has been shown that to simulate
fast phenomena associated with the transport of carriers generated by femtosecond laser
pulses, the full Lorents force must be evaluated [13], where the electric and magnetic fields
should be obtained by solving the time dependent Maxwell's curl equations (note that we
refer here the fields are generated by the fast moving charge particles, not to the laser
radiation which is absorbed by the sample) Implementation of the algorithm can be very
suitable to parallel computation and actually cheaper than solving the Poisson's equation
for multi-dimensional simulations [12].

It is not clear at which frequency range the inclusion of the magnetic field begins to be
necessary. In the simulation of general microwave devices, it should be possible to simply
substitute Poisson's equation with the time-dependent wave equation for the retarded po-
tential, which has the same space-dependent terms, to account for the displacement currents
(in 1-D the displacement current contribution can be integrated and applied as additional
boundary condition to Poisson's equation). However, in the THz regime the wavelength of
the electromagnetic field in the doped semiconductor layers can be comparable or smaller
than the dimensions of the active regions,

In other cases, the solution of Poisson's equation on discrete points may not be accurate
enough to resolve the coulomb interaction between charges. Reduction of the mesh size
may not improve much the situation, because the number of simulated carriers is fixed. A
molecular dynamics can be used to calculate the force acting on a particle by adding the
coulomb potential due to all the other charges. This approach would automatically include
the electron-electron interaction efects, which can be very important in the case of Ligh
concentrations. The major computational obstacle is in the fact that the full molecular
dynamics evaluation of the forces involves a number of operations of order N 2, where N
is the number of particles. In order to develop practical algorithms, it should be possible
to apply multipole techniques, which have been extensively used to calculate molecule
configurations, ionic systems [7] and capacitances in complicated VLSI interconnect layouts
[8], to name a few applications. With accurate calibration, multipole algorithms only
require a number of operations of order N. The idea is to consider particle-particle forces
only within an appropriate neighborhood, and treat interactions from longer range particles
through interpolated forces on a mesh with increasing coarseness at farther distances.

In many applications it is common to simulate only particles in a relatively small cell of
a periodic structure, or a sample of a larger device. When the Molecular Dynamics method
is implemented, the interactions with charges in other regions, which are not simulated,
cannot be neglected. If one assumes that the simulated geometric sample is one element
of a periodic structure, every particle in the simulated cell corresponds to a "replica" in
each of the other cells of the periodic domain. The replicas of a given particle constitute
then a "lattice" of charge, and special techniques must be applied to get a convergent sum
of the interactions keeping down the computer time requirements [14]. For simulation of a
bulk material, one has to consider 3-D lattices of replicas, 2-D and 1-D lattices for 1-D and
2-D device simulations, respectively, and in the case of a complete 3-D device simulation
no replica has to be taken into account. Although more accurate than Poisson's equation,
a molecular dynamics algorithm is still providing forces in an electrostatic approximation.

VI. Hybrid techniques
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Monte Carlo techniques have found many useful applications beyond full self-consistent
simulation of devices. Assuming that the correct solution of the Boltzmann equation is
obtained, Monte Carlo simulations are often used to parameterize other models. Field
dependent mobility and diffusion coefficient are used in drift-diffusion applications, for
instance, and a number of other parameters are extracted to calibrate hydrodynamic and
energy transport models. Although the Monte Carlo results should not always be trusted
"as completely exact, the potential problems in these schemes are more due to the fact that
parameters, obtained for a bulk with uniform field, are often employed for nonuniform field
condition, which can be considerably different.

The Monte Carlo approach is also used as a postprocessor using the potential profile
obtained by a drift-diffujion or hydrodynamic approach. This is certainly a vaJA; approach
for large devices, where not only a drift-diffusion solution is acceptable, but also full self-
consistent Monte Carlo solution would be impractical. By tracking particles simulated with
Monte Carlo in the fixed potential, it is possible to evaluate high energy effects (injection
into oxide, impact ionization) which are not well account for in simpler models. The
advantage of a postprocessor is in the fact that one can use very efficient vector and parallel
algorithms, since the tracked particles are essentially independent in nonself-consistent
simulations.

A recent application of Monte Carlo simulation involves the calculation of tables for
a scattering matrix technique [15]. The Monte Carlo procedures provides the possible
outgoing momentum values, with associated probabilities, for a given incoming momentum
into a thin slab of the device. By partitioning the device into slabs and matching the
solutions at the interfaces with the momentum scattering tables, it is possible to get a
solution which provides all the information of a self-consistent Monte Carlo, but with
smooth solutions without the noise. Because of this, rare events should be easier to observe
directly. Multi-dimensional applications are also possible with this technique.

VII. Improved Physical Models

A shortcoming of Monte Carlo models is due to the unavailability of many constants which
are necessary to determine the scattering rates. A typical example is represented by de-
formation potentials of phonon scatterings. The usual procedure is to choose a set of
deformation potentials which fit experimental data for steady-state velocity-field charac-
teristic curves. Unfortunately, many slightly different sets can be found which provide a
reasonable fit. Measurements of some important parameters, like the intervalley deforma-
tion potential for transitions between r and L valleys in GaAs, have been attempted, but
the data reported by various groups are too contradictory to resolve the uncertainty.

The solution is to formulate new models which are based on first principles and rely
less on parameter fitting. Electron-phonon scattering is usually treated with a simplistic
dispersion relation, and is defined on arbitrary partitions of the Brillouin zone centered
around energy minima (valleys). At high fields, the validity of this picture is questionable.
A complete phonon model with accurate dispersion relations is needed, but the computa-
tional complexity is formidable. A consistent approach should treat both the bandstructure
and the electron-phonon interaction on the same footage.

Electron-phonon matrix elements of the true Hamiltonian are equivalent to the matrix
elements of a pseudo-Hamiltonian, as long as certain conditions on the true potential are
met. Several calculations have been performed for semiconductors using local and nonlocal
empirical pseudopotentials. These are assumed to be the sum of spherical potentials which
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move rigidly with the atoms [16,17]. Another approach uses the ab initto pseudopotentials,
which avoid self-consistency problems of the empirical approach by approximating the
change in charge density when the atoms are displaced [18]. Computations using the
Harris functional approach have provided the deformation potentials for phonon scattering
in Si, throughout the Brillouin sone. A significant result is the evidence of the variation
of deformation potentials with initial and final state wavevector. The total deformation
potential exhibits a high degree of dispersion, especially for transitions away from the valleyminima [181. These results have significant implications for improving the predictive power
of high-field Monte Carlo simulations.

VIII. Conclusions

Monte Carlo techniques for device simulation are undergoing dramatic developments due to
the recent evolution of available computational platforms. Full bandstructure applications
are already practical for use on top of the line workstations. New optimization techniques
for the determination of momentum space trajectories, new approaches for electron-phonon
interaction which remove much of the uncertainties of current models, and emerging ap-
plications on parallel architectures, should contribute to provide, in the next few years,
accurate and efficient simulators with sufficient predictive capability in the high field trans-
port regime to meet the needs of CAD designers of new generations of integrated devices.
Monte Carlo techniques have already found a very important role as tools for the calibra-
tion of simpler models, and as postprocessing complements of conventional simulators, to
quickly assess the importance of hot electron phenomena affecting device reliability.
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Electron-Hole Scattering Effects in Silicon

Jim Dewey and Mohamed A. Osmazn

School of Electrical Engineering and Computer Science
Pullman, Washington, 99164-2752

Abstract

The role of electron-hole scattering on the low field mobility of electrons in p-doped sili-
con is examined using an Ensemble Monte Carlo approach. The transport model includes
both electron and hole dynamics with coupling between the electron and hole systems
through coulombic electron-hole interactions. The electron-hole scattering rate is calcu-
lated using the elliptical nature of the conduction band valleys and non-parabolicity of
the valence band. Minority electron low-field drift mobilities are calculated at acceptor
concentrations of 4.5x 101ecM-3 and 3.8x 101 cMr-3 at 300K. Calculations are in excellent
agreement with experimental values.

I. Introduction

Experimental investigations of minority electron transport in silicon report a consider-
able reduction in electron mobility in the presence of an applied electric field[1,2]. This
decrease is attributed to the drag effect of electron-hole scattering which is a result of
the net momentum transfer from electrons to holes. In this work, Ensemble Monte Carlo
techniques are used to examine the low-field mobility of minority electrons in silicon.

Previous microscopic studies of minority electron transport using Monte Carlo techniques
have been conducted for GaAs[3,4J and silicon[5,6J. Furuto and coworkers[3] compared
experimental drift velocity in p-doped GaAs with Monte Carlo calculations. The hole
transport model used in their work contained only heavy holes and simulated hole dy-
namics with a drifted Maxwellian distribution. Their hole model ignores the complex
nature of the valance band. Sedra and coworken[4] used a more accurate hole trans-
port model and performed simulations using a single particle Monte Carlo technique. A
shortcoming of both their works and our previous work in silicon[5,6] is the use of the
Brooks-Herring impurity scattering model. This model is based on the first Born approx-
imation and is invalid for impurity concentrations above 10 1"cm-' at room temperature.
This was clearly shown in our previous calculations at 3.8x 101 cm-3[6) where calculated
low field mobility overestimated experimental values[l]. A new impurity scattering model
for Monte Carlo calculations was developed, to correct this problem[7].

In this contribution we report low field drift mobility of electrons in room temperature
silicon for acceptor concentrations of of 4.5x 101 m'-3 and 3.8x 101 5cm- at 300K. Cal-
culations are reported using an improved hole transport model[8] and impurity scattering
model[7].
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II. Tfansport Model

The transport model includes the dynamics of both electrons and holes. Modeling of both
carriers is required, due to the strong effect of the hole plasma on electron transport. The
hole transport model includes warped non-parabolic heavy and light hole bands and a
spherical spin-orbit band. The non-parabolic nature of the heavy and light hole bands is
represented by an energy dependent effective mass. The scattering mechanisms taken into
account are intra and inter-band elastic acoustic and non-polar optical phonon scattering.
More details on the hole transport model along with comparisons to experimental values
are reported elsewhere[g].

The cectron transport model contains all six non-parabolic ellipsoidal 3-valleys. Three in-
tervalley g-type phonon scattering between parallel valleys, three intervalley f-type phonon
scattering between perpendicular valleys, elastic intervalley acoustic phonon scattering,
ionized impurity scattering, and electron-hole scattering. The phonon scattering and ma-
terial parameters given by Brunetti and coworkers[9] and the intra and inter-valley phonon
scattering rates calculated by Jacoboni and Reggiani[10] are used in this work. Since cal-
culations are reported at low fields and doping concentrations greater than 10"cm-3 ,
impurity scattering models based on the first Born approximations, such as the Brooks-
Herring model, overestimate experimental mobility. For this reason a new impurity scat-
tering model was developed and implemented in our Monte Carlo program[7]. The model
and method used to implement electron-hole scattering is discussed in the next section.

III. Electron-Hole Scattering Rate

The interaction between an electron and hole is assumed to be a screened coulomb po-
tential. The probability of an electron and hole making a transition from the initial state
(k., kh) to a final state (k•, k4) as a result of a Coulombic interaction is given by th-
Fermi Golden rule for first-order transistions. By summing over all final electron and hole
states and determining whether or not the final states are occupied after the scattering
mechanism is chosen[10], the scattering rate becomes

S~h(k,, kj) = Q'm3 2-h (E!) 1/j~2 1 ge2fkhdIkh (1)

where m. is the free electron mass, p is the hole concentration, Pd is defined as

Pd = ' (2)

where -- i-+- (3)

A I mk mi
and (i specifies the direction :,pz)

,.= + + / (4)
where

\mj _m&J)(5
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Figure 1: Minority Electron mobility in room temperature silicon as a function of applied
electric field for an acceptor concentration of 4.5x 101 cmr-.

The relative wavevector g is made more complex by the direction dependent electron
mass and energy dependent hole mass. In its present form, equation (1) is not suitable
for calculating scattering rates in an Ensemble Monte Carlo program, since the hole
distribution function is not known before the scattering event is chosen. To overcome
this problem, the method proposed by Brunetti and coworkers[9] is used where the term
g'/(9*2 + 6") is replaced by its maximum value of 1/2g'. By using the maximum value,
the resulting scattering rate is the scattering rate for electron-hole scattering plus a self-
scattering rate and a rejection method is used.

IV. Results

Figures (1) and (2) show minority electron mobility calculations and experimental data
as a function of applied electric field for acceptor concentrations of 4.5xl016cm- 3 and
3.8x l01cm-3 , respectively. Majority electron mobility is shown for comparison. As
these figures show, there is good agreement between experimental results report by Tang
and coworkers[4] and Monte Carlo calculations. The experimental results of Tang and
coworkers[4] show a 45% decrease from the zero field mobility at only 100V/cm at both
acceptor concentrations while Monte Carlo calculations show a 40% decrease under the
same conditions. This dramatic decrease in mobility when an electric field is applied
is due to the drag effect of electron-hole scattering. After the initial decrease, mobility
essentially stays constant as the electric field is increased. This saturation of the drag
effect is due to the inherent Coulombic nature of electron-hole scattering. As the electric
field is increased, the velocity of both carriers also increase resulting in a larger exchange
of momentum during electron-hole scattering. But, as with any Coulombic interaction,
as the velocity increases the scattering cross section decreases. The larger exchange of
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Figure 2: Minority Electron mobility in room temperature silicon as a function of applied
electric field for an acceptor concentration of 3.8 x 10 1 cm- 3.

momentum is countered by a decrease in the frequency of the interactions resulting in a
saturation of the drag effect.

V. Conclusion

Minority electron transport in room temperature silicon has been examined using an En-
semble Monte Carlo approach that includes the dynamics of both electrons and holes. A
theoretical expression for electron-hole scattering which takes into account the ellipsoidal
nature of the conduction band valleys and non-parabolicity of the valence band was devel-
oped and implemented. Improved hole transport and impurity scattering models were also
implemented. Using the model discussed in sections (II) and (III), calculations are in ex-
cellent agreement with experimental results. Both calculated and experimental data show
a dramatic decrease from the zero field mobility when the electric field is only 10OV/cm.
This reduction is attributed to the drag effect of electron-hole scattering.

VI. References

[1] D.D.Tang, F.F.Fang, M.Scheuermann, and T.C.Chen, 'Time-of-flight Measurements
of Minority-Carrier Transport in p-silicon,' Appl. Phys. Lett., vol. 49, pp.1540-1541,

1986.

[2] M.Morohasi, N.Sawaki, and I.Akasaki, 'Electron Mobility and Drag Effect in p-doped
Silicon,' Japan. J. Appl. Phys., vol. 24, pp. 732-736, 1985.

[31 T.Furuta, H.Taniyama, M.Tomizawa, and A.Youhii, "Hot-Carrier Transport in p

203

S• 9 9



-GaAs,* Semicond. Sci. Technol., vol. 7, pp.B346-B350, 1992.

[4] K.Sedra, C.M.Maziar, B.G.Streetman, and D.S.Tang, "Effects of Multiband Electron-
Hole Scattering and Hole Wavefunction symmetry on Minority-Electron Transport in
GaAs," unpub6lished manuscript.

[5] J.Dewey and M.A.Osman, "Monte Carlo Investigation of Minority Electron Transport
in Silicon," Proc. IWCE, pp.225-228, 1992.

[6] J.Dewey and M.A.Osman, "Monte Carlo Investigation of Minority Electron Transport
in Silicon," Appi. Phys. Lett., vol. 62, pp.187-189, 1993.

[7] J.Dewey and M.A.Osman, "Impurity Scattering Model for Monte Carlo Calculations,",
(in preparation).

[8] J.Dewey and M.A.Osman, "Monte Carlo Simulation of Hole Transport in Silicon," J.
Appl. Phys. (in press).

[9] R.Brunetti, C.Jacoboni, F.Nava, L.Reggiani, "Diffusion Coefficient of Electron in
Silicon," J. Appl. Phys., vol. 52, pp. 6713-6722, 1981.

[IT t' .Jacobini and L.Reggiani, "Monte Carlo Method in Transport," Rev. Mod. Phys.
vol. 55, pp.645-705, 1983.

[111 P.Lugli and D.K.Ferry, Physica, vol. 117B, pp.251-254, 1983.

204



Hole Transport in the Warped Band Model of GaAs

N. Nintunse and M.A. Osman
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Washington State University, Pullman, WA 99163-2752

Abstract
Hole transport in the warped band model of GaAs has been investigated using an En-
semble Monte Carlo approach. Scattering rates used in the simulations were derived
for warped heavy and light hole bands and for a spherical split-off band. The obtained
velocity-field characteristics are in better agreement with experimental data than re-
cently published values where only the heavy and light hole bands were included in the
model and warping was accounted for by an approximate overlap function. Simulations
show that a better fit to the experiment and to results of a realistic band structure
model can be attained with an optimal choice of valence band parameters.

I. Introduction

The performance of semiconductor devices, such as bipolar transistors, p-channel field-
effect transistors and heterojunction bipolar transistors, is determined by hole trans-
port proprieties. In some earlier studies, warping of the valence band has been either
ignored[1] or taken into account by the use of an approximate overlap function[2]. The
split-off band has also been mostly ignored due to its relatively low population. How-
ever, warping and the effect of the spin-orbit interaction on the heavy and light hole
band cannot be overlooked if precise hole transport modeling is an issue. Brennan and
coworkers[3, 4] used the Monte Carlo method in their investigation of hole transport in
a realistic band structure. However, high precision is achieved that way at the expense
of CPU time. Recently Brudevoll and coworkers[5] pointed to the fact that scattering
rates often used in literature for ionized impurity scattering, inter-band polar optical
phonon scattering and acoustic phonon scattering rates require corrections. Brudevoll
and coworkers[2] studied the warm and hot hole drift velocity in GaAs using a valence
band model made of a heavy and a light hole band, and warping of the valence bands
was taken into account by the use of an approximate overlap function.

In this paper, hole transport in a warped valence band model of GaAs is investigated
using an Ensemble Monte Carlo program. The scattering rate calculations for intra- and
inter-band hole scattering take warping and the overlap integrals into account. Hole
velocities were obtained for different sets of warping parameters and for fields up to
100kV/cm. Simulation results using this simple model are compared to the results of
Brudevoll and coworkers[5], Brennan and coworkers[3], and to the experimental data
of Holway and coworkers(6]. The Monte Carlo model used in this work is presented
next. The results of the simulation are discussed in section III. Conclusions are given
in section IV.
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II. The Monte Carlo Model

The Monte Carlo approach is used in this work to investigate hole transport for fields
applied along the (100) direction. The valence band model includes warped heavy and
light hole bands and a parabolic split-off band. For the warped bands, the energy is
given by: E~k) = IAI'k' [1 + g(9,•)] (1)

2m.
where

g(e, 0) = [(BIA)2 + (C/A)'(sin3 9 cos2 9 + sin4 9 cos2 4 sin2 9)] 1/ (2)

Above, the +(-) sign correspond to the light(heavy) hole band, 0(0) is the polar(azimuthal)
angle of k, and A, B, and C are the inverse band mass parameters. The set of param-
eters (A=-6.98, B=-4.5, C=6.2) given by Madelung[7], and the sets (A=-7.98, B=-
5.16, C=6.56) and (A=-7.65, B=-4.82, C=7.7) used by Brudevoll and coworkers[5] are
adopted in simulations. The mass of the holes in the warped bands is direction depen-
dent and is given by:

h= A(1 g(g, 0)) (3)

For the split-off band, a spherical equi-potential surface is assumed with a scalar ef-
fective mass. Scattering mechanisms included are the acoustic phonon, optical phonon
scattering, screened polar optical phonon, with intra- and inter-band transfers for all
three bands. Impurity scattering is not included for simplicity.

The scattering rates contain overlap factors which are approximated by functions de-
rived by Wiley[8J. The resulting expressions become easy to use in Monte Carlo calcu-
lations. In the particular case of ionized impurity scattering, Jacoboni and Reggiani[9]
propose to neglect a weak warping in the process of scattering process determination,
but use a corrected effective mass. Warping would be taken into account in final state
determination. Such approach is justified as warping has a noticeable effect on next
state determination rather than on the values of the scattering rates. Tiersten[10], for
example, found that the valence band anisotropy can result in hole mobility variation
of up to 20%, while the scattering rates vary by less than 1.%. In our Monte Carlo
program, scattering rates are evaluated at each time step so that angular evolutions
could be observed. The scattering rates for the acoustic and optical non-polar scatter-
ing are weighted by an overlap factor of 1/2 while the polar optical transition rates are
integrated taking the overlap factor into account. The final states are determined by
applying the rejection technique to the exact angular probability functions containing
angular contributions from both warping and the overlap integral. The results of the
simulations will be presented in the following section.

HI. Results and Discussion

The velocity-field characteristics were calculated for the current model at 300K lattice
temperature. Figure 1 shows the obtained velocities for the same parameters used by
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Brudevoll and coworkers[2]. Also shown are the experimental results of Hoiway and
coworkers[6]. The recent results of Brudevoll and coworkers overestimate the hole drift
velocity at all fields. It is obvious from figure 1 that the current calculations, which
take into account the direction dependence of the hole mass, are in better agreement
with the experiment. The inclusion of the split-off band doesn't have a strong effect at
low fields as its hole population is low. However, its contribution to the hole velocity
becomes important at fields higher than 60kV/cm. It is also above that field that the
current model and the model of BrudevoUl and coworkers don't realize a complete veloc-
ity saturation. Figure 2 illustrates the dependence of the hole drift velocity on warping
parameters. The shown simulation results were obtained using 3 sets of valence band
parameters and GaAs parameters taken from reference [4]. The set (A=-6.98, B=-4.5,
0=6.2) by Madelung[7] and (A=-7.65, B=-4.82, 0=7.7) result in almost equal velocity
curves and band warping. These results overestimate the velocity at high fields when
compared to experimental data and the results of Brennan and coworkers[3] obtained
using a more complete valence band model. However, for fields below 60k V/cm results
closer to the experiment can be obtained by an optimal choice of valence band param-
eters.

IV. Conclusion

We have investigated hole transport in the warped band model of GaAs, using an Ensem-
ble Monte Carlo program. The velocity-field characteristics for three recently reported
valence band parameters have been shown to be between the recent results of Brudevoll
and coworkers[5], the results of Brennan and coworkers[4] and the experimental data
of Hoiway and coworkers[6]. The current model, though simple, coupled to an optimal
choice of valence band parameters, results in velocity-field characteristics consistent
with previously published data. This model could be useful in the study of anisotropy
dependent phenomena, such as orientational relaxation of carrier momentum.
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Ensemble Monte Carlo Simulation of the Hot Electron Transport
in the Heterojunction Bipolar Transistors

Gregory Khrenov, Victor Ryzhii and Sergey Kartashov' 4

Department of Computer Hardware,
The University of Aizu,
Aizu-Wakamatsu City, Japan 4

Abstract

The effect of the electron transport regime in the base-collector junction on the steady-
state and high-frequency characteristics of a heterojunction bipolar transistor (HBT) is 4
examined. A new technique based on the Fourier analysis of the induced collector current to
evaluate HBT high frequency performance is used. The non-stationary electron transport,
velocity overshoot effects and effects of the high-current density are taken into account
using self-consistent time-dependent ensemble Monte Carlo particle simulation.

1. Introduction

Submicrometer heterojunction bipolar transistors (HBTs) are now widely investigated
because of their great promise for microwave, millimeterwave and ultra-high-speed digital
operations. In a typical N - p - n HBT with abrupt emitter-base heterojunction electrons
are injected from wide-gap emitter with considerable excess energy into a p-type narrow-
gap base region. As a result the electron transport in the submicrometer HBT is far from
equilibrium. To improve the HBT high-frequency performance the different base-collector
junction designs have been proposed and investigated experimentally in [1,2] and using nu-
merical simulation in [3-5]. For these designs the electrons stay longer in central valley and
therefore achieve high average velocities into the collector region. Thus, extreme nonequi-
librium electrons transport in the base and collector regions plays a role in determining
device performances. Therefore to calculate transistor electrical characteristics with high
accuracy the numerical simulation seems to be the only powerful way.

II. Numerical Model

To investigate the operation and design principles of the HBTs one-dimensional ensemble
Monte Carlo simulator was developed [5]. Our Monte Carlo model incorporates complicated
non-parabolic electron energy spectra and all essential scattering mechanisms. Motion
of the holes in the base region and the electrons in the heavily doped collector contact
region is evaluated using the drift-diffusion approach. Two distinctive features are inherent
in the model. First feature is concerned with the choice of the self-scattering events.
To minimize the number of the self-scattering events a special procedure is used where
the total scattering rates are represented by the tabulated momentum-dependent step-like

lnstitute of Physics and Technology, Moscow, Russia
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functions. These functions are chosen taking into account local values of the electric field
and impurity concentration. Applications of this technique permits to reduce the number
of self-scattering events to 7% of the scattering events total number.

Other novice of the model is concerned with the calculation of the HBT small-signal
high-frequency performance. The HBT high-frequency performance is determined by the
base resistance, the emitter and collector capacitances effects and the carrier transit effects
in the base and collector regions. To characterize the HBT as an microwave and millimeter-
wave amplifier the cut-off frequency fT is usually used. As a rule the following expression
derived from the small-signal equivalent circuit analysis is used to estimate fT in a HBT
[1]:

fT = {27r- [rE CBE + Trc + (rE + RE + Rc) . CBC]}-', (1)

where rE is the emitter resistance, RE is the emitter series resistance, Rc is the collector
series resistance, CBE and CBc are the emitter and collector capacitance respectively, -rBC
is the base-to-collector transit delay time. In this expression all the carrier transit effects
are considered by the only carrier transit delay time through the base and collector rBC
usually being estimated from the steady-state distribution of the mean electron velocity
[1,6]. It is obvious that this rBc formulation is not absolutely correct because it does not
take into account the electron velocity profile in the collector region and detail shape of
the electron distribution function. The last reason is especially important in the presence
of the non-stationary carrier transport. Therefore method based on the Fourier analysis of
the non-steady-state induced collector current is used in present model.

Simple high-frequency equivalent circuit of HBT is shown in Fig.1. For this circuit
frequency-dependent common-emitter short-circuit current gain h21 may be written as fol-
lows:

h21w [ (1 + jwCBErE) " (1 + jwCBcRC) -1
h~l(w) ----r(w) - jwCac(rE + RE) + W2CBECBcrERE (2)

Y(w) = YE(W).J(W), Yc(w)

where yE is the emitter efficiency, 03 is the base transmission coefficient and Yc is the
collector transmission coefficient. The values of the resistances and capacitances in (2)
are calculated from the numerical simulation of the required steady state or are estimated
from the experimental results. Further in our analysis, CBC, CBE, rE, RE, RC and YE are
assumed to be independent on frequency and to be dependent on the applied bias. The
only problem is the calculation of the complex frequency-dependent coefficient 7(w).

To calculate /3(w) - yc(w) the Fourier analysis of the non-steady-state induced collec-
tor current is used [3]. Initially the steady-state simulation for the given applied bias is
performed and stationary distributions of the potential and carriers concentrations are cal-
culated. After that the electron bunch consists of several thousand electrons is launched
from the base-emitter interface during short time interval and the time dependent collector
current response Jc(t) is calculated. Here we assume that the injected non-steady-state
electrons travel through base and collector in the known stationary electric field. When
all launched electrons leave the modeling region the Fourier transformation of the injected
non-stationary emitter current JE(t) and induced collector current are carried out. The
frequency-dependent base-collector transmission coefficient is defined as follows:
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Fig.1 Small-signal equivalent circuit (a) and cut-off frequency fT as a function of the
collector current Jc (b).

F[Jc(t)]
3(w) . /c(w) - F[J,(t)]' (3)

where F denotes the Fourier transform. Cut-off frequency fT is defined from the analysis
of the h3i(w) computed by (3) as a frequency where Ih21(W)I =1. It should be noted that
proposed method is also appropriate to calculate other HBT high-frequency characteristics
such as power gain, stability factor, scattering matrix and so on.

To verify proposed Monte Carlo particle model and method of evaluation of the HBT
high-frequency performance the submicrometr HBT with the same structure as in [1] was
simulated. The comparison of the simulated results with the experimentally observed
results have shown high accuracy and validity of the model (see Fig.1).

MI. Rmults and Discussions

A series of AUnAs/GalnAs HBTs with arrange of base thickness WB from 0.02pm to
0.4p#m and doped at 1.5. 101i'cm- was simulated at the temperature 300K to investigate
the base thickness effect on the electron transport regime in the base.
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Fig.2 Common emitter current gain 0 (a) and base cut-off frequency fB (b) as a function
of the base thickness WB.

The HBT common emitter current gain /8 dependence as a function of the base re-
gion thickness is shown in Fig.2. The analysis of this figure shows that P(WB) is pro-
portional 1/WB(corresponds to ballistic transport) for WB < 0.1pm and is proportional
1/1W (corresponds to diffusive transport) for WB > 0.1/im.

The base cut-off frequency If = I , where TrB is a base delay time, dependence
as a function of the base layer thickness is presented in Fig.2. Solid curve in the figure
presents the dependence calculated by the numerical simulation (method based on the
Fourier decomposition of the non-steady-state base current was used in present work to
estimate the rB). Dashed curve presents the dependence calculated for diffusive transport
and dotted curve corresponds to ballistic transport. It is seen that the ballistic transport
take place only for WB _< 0.06pm and pure diffusive transport occurs while the base
thickness is more than 0.21&m. For 0.061&m <_ WB _< 0.2/im the electrons transport in the
base region is far from equilibrium but is neither pure ballistic nor pure diffusive. In this
situation correct estimation of the base delay time is possible only by numerical simulation.
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Scaled Ensemble Monte Carlo
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Abstract

We introduce a scaled ensemble Monte Carlo (SEMC) technique, useful for obtaining
statistically significant results far into the low-density tails of carrier distributions. Standard
approaches for studying this regime (weighted EMC) are based on determining single-particle
distribution functions using a nonuniform trajectory sampling; the new technique instead
stimulates a scaled distribution, with an energy-dependent scaling factor, but uses ordinary
EMC weighting. This technique is flexible and simple to code. We display some results for
bulk GaAs, with densities ranging over seven orders of magnitude, using only 10,000 particles.

I. General System Description

Our treatment is in the classical regime, in the absence of significant interparticle correlations, so
the system is described formally by the usual time-dependent single-particle distribution
function f(rp;t) = f(x;t) [x = (r,p) is a phase space coordinate]. The distribution function
obeys the Liouville equation:

where H = H(x) is the time-independent single-particle Hamiltonian, and (-,-) is the Poisson
brackeL We make the usual assumptions that collisions or scattering events take place on time
scales much shorter than the time between collisions, so effects such as collision broadening can
be neglected. Further, the scattering events are in fact approximated as instantaneous, so that
intracollisional field effects can also be ignored. Under these assumptions, all important
sources of potential and phonon scattering can be written in the form

k( t =-I"-r(x;t) f(x;t) + Jr (xx';t)f(x';t)dx' (2)

II. Scaling Formalism

The approach developed depends primarily on the observation that an energy- and time-
dependent scaling factor commutes with noncollisional term on the right-hand side:

s(HJt) (H,f) - (Hs(Ht)f) . (3)

Thus, we define a scaled distribution function defined by

I(x;t) a s(H(x),) f(x;t). (4)
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The principal advantage of multiplying by an energy-dependent factor arises from counting
statistics. If we are interested in the distribution function in some region about the phase space
point x, we consider as a function pf time the number of simulation particles N in the vicinitAy of
that point. The fractional error in yis then 1/NY, which is the fractional error in f i s-lxf as
well. For regions of low phase-space density, N is proportional to f(x;t). Thus, for example,
to examine regions where the phase space density is down by seven orders of magnitude from
the maximum, one needs many times of ten million simulation particles to keep the error from
exceeding the estimate.

A standard solution to this problem - weighted EMC - is to define a region of interest in
phase space, and to perform multiple simulations of those few particle trajectories which enter
it. Usually, this is coded in a way that sharply distinguishes high- and low-density regions. If
the density falls smoothly, there is no efficient place to draw the boundary between these two
regions. Other, more subtle approaches have also been used [1].

The present approach is based upon scaling the distribution function that is simulated by EMC,
rather than upon a weighting the EMC simulation of an unscaled distribution function. The
choice of s determines the trajectory density. In principal, these two approaches may be
equivalent in particular cawses. However, a weighted EMC elimiinates the usual identification
between individual initial particles and individual trajectories sampled (in what is the Monte
Carlo integration of the Boltzmann equation). As a result, one loses the intuitive simplicity of
regarding sampled trajectories as individual particles of a large ensemble. In a scaled EMC, on
the other hand, one preserves a one-to-one correspondence of initial condition to trajectory, and
it remains possible to regard the trajectories sampled as the actual paths of individual particles.
As we describe below, however, in order to redistribute the statistical sampling weight, one
pays the price that the trajectories do not follow the paths of ordinary particles.

IIl. Time-dependent scaling

Particle-number conservation imposes an important constrainon how s(H(x),t) is allowed to be
chosen. By Ippropriate normalization, the total number N of simulation particles in the
simulation off is the integral of the scaled distribution function:

ANQ) ff J (z) dx fi s (x)f (x) dx . (5)

If s is chosen to emphasize high-energy regions which have low density, then during a
relaxation, thermalization will cause a transfer of (real) electrons to lower-energy regions where
s is smaller. If s is npt allowed a time-dependence to compens te, the total number of
simulation particles off must decrease - degrading the statistics in 1. Conversely, a heating
mechanism would increase the number of simulation particles, improving statistical precision
but possibly requiring undesirable computational expense. By allowing s to have a time-
dependence, we accomplish in the time domain what the energy dependence of s accomplishes
for the energy domain: reduce variations in particle number so that fractional errors can be kept
at an acceptable level throughout the region of interest, with the least computational effort.

We chose a simple form for the joint energy-and-time dependence of s: we let them be

independent factors. This can be written

s(Ht) = exp(a(t)+-KH)). (6)

Furthermore, we let the function %H) = -H / k 3 Te. This is appropriate for distpbutions f
which are approximately characterized by effective temperatures below Ts[Higher
temperatures lead to normalization problems with y.J This choice is also convenient
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computationally: a linear function y implies that inelastic scattering rates as well as elastic rates,

are space-position-independent, and can be stored efficiently in look-up tables.

then obeys a modified Liouville equation

HJ {,) + (22)c (7)

in which the "collision" or scattering term is defined by

= s (ac (8)

Equations (2) and (8) specify completely the modified scattering term (a/yat)co1 . However, in
order to implement a Monte Carlo time-evolution, one must determine scattering rates for the
scaled problem which are analogous to the out-scattering rates r(x;t) and the in-scattering rates
r(x,x';t) of the unscaled problem. There is some freedom in way this is done. One well-
known degree of freedom is associated with self-scattering:

{ r(x;t) -+ r(x;t) + A'r(x;t) (9)
r(x,x';t) -4 r(x,x';t) + Ar(x;t) 8(x-x') J (

where ordinarily Ar is chosen to make the total out-scattering a positive constant. This is a kind
of gauge transformation, in which the physically-significant total scattering rate is fixed, while
unobservable components of the in- and out-scattering rates make the numerical implementation
tractable. A more general kind of gauge transformation is made in the scaled EMC approach,
leading to off-diagonal in-scattering rates of the form

S = O(x,x I + O(z) lJ(x) for x * x'. (10)

N
The second term on the right-hand side leads to a kind of attractive interparticle scattering. This
performs a r6le similar to that of trajectory iteration in weighted-EMC approaches: simulation
particles entering critical regions are given greater weight, and are effectively caused to perform
multiple traversals. However, in SEMC this weighting is implemented smoothly, rather than
abruptly at the boundary of a region of interest, and it is accomplished with a fixed number of
particles undergoing essentially ordinary scattering.

IV. Simulations

We have applied the SEMC technique to bulk GaAs semiconductor at 300 K. We used
parameters (deformation potentials, phonon energies, band structure, etc.) that have been
confirmed empirically in previous simulations [2]. We have specifically neglected hot phonon
effects and Coulomb scattering, so we have essentially modeled the electrons in intrinsic GaAs
with weak laser excitation. The system was allowed to relax for 10 ps from the initial laser
excitation, and the result plotted below were obtained as an average of the distribution funcrion
during the last 0.5 ps (i.e., an average was performed of results of the last 100 5-ps observation
times). Because of the averaging procedure used, there is a kind of local averaging of the
density, so that the standard deviation of the results from a smooth fit underestimates the
uncertainty of the simulation results.

Figure 1 shows the density as a function of energy of electrons in the central (D) valley. An
ordinary (unscaled, unweighted) EMC simulation is compared with the scaled simulation using q
Ten = 400 K. Both of the simulations use the same (constant) number of simulation particles:
104. In this valley, the SEMC simulation appears to be less smooth (i.e., to have greater

216

• • •• • •• •4



statistical uncertainty) at low energies. This is in fact correct: the price we pay for increasing the
number of simulation points at higher energies is to reduce the number at low energies, wirh
correspondingly poorer statistics. At higher energies, when the densities become smaller than
10-4, the usual EMC becomes completely unreliable, since results correspond to single
simulation particles in a bin. The results of the two EMC simulations are consistent (in the
sense that their difference is not statistically significant), as they must be, since they are
mathematically equivalent in the large-N limit. The equivalence at high energies is clearly due to
the large error bars in the unscaled EMC (not shown) which completely cover the range of
densities to zero. There is the appearance that the unscaled EMC predicts a systematically
higher density at high energy, since all of the high-energy points plotted are above the
corresponding SEMC points plotted. There are two reasons for this appearance. One is the
local (time) averaging discussed, which has the effect of smoothing a random statistical
fluctuation into an apparent systematic one. The other is that on the semilogarithmic scale, the
points where EMC predicts zero density (and lie below the SEMC simulation) cannot be plotted.

4
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Figure 1. Central conduction valley population density.

Figures 2 and 3 show the same comparison as figure 1, for the L- and X-valleys, respectively.
The thresholds at zero kinetic energies correspond to satellite band minima many times kBT
above the r-valley minimum, and so the regime of poor statistcs is reached more quickly. The
SEMC in each case shows the smooth exponential fall-off of a nearly equilibrated system.

V. Conclusion

We have shown that a scaled EMC simulation can be implemented to significantly improve the
statistics over broad ranges of low real densities.
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Figure 2. L-valley population density.
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Figure 3. X-valley population density.
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ACOUSTIC PHONON CONTROLLED TRANSPORT IN
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Abstract

The rates of electron scattering by acoustic phonons in low dimensional structures
are calculated. It is shown that due to uncertainty of momentum conservation in low
dimensional systems the acoustic phonon scattering becomes essentially inelastic in con-
trast to that in bulk materials. We propose simple procedure for incorporation of inelastic
acoustic phonon scattering into a Monte Carlo technique. It is demonstrated that electron
low-field mobility at temperatures less that 100 K calculated within elastic approxima-
tion is greatly underestimated. We have also demonstrated that velocity-field dependence
in QWIs has a superlinear region. This superlinear region is associated with decline in
acoustic phonon scattering efficiency as the electrons get heated.

I. Introduction

Low dimensional (LD) semiconductor structures are now widely recognized as a very
promising basis for future technological applications. The electron transport in LD struc-
tures at low temperatures is controlled by acoustic phonon scattering. However, so far
there is a considerable gap in understanding of some essential aspects of LD electron
scattering by acoustic phonons. The elasticity of electron-acoustic phonon scattering is
a commonly used approximation [1-4]. A closer look at this mechanism shows that elec-
tron scattering by acoustic phonons in quantum structures becomes essentially inelastic
and becomes effective mechanism of energy dissipation [5]. This is due to the fact that
the momentum conservation in LD structures for electron-acoustic phonon systems is not
preserved.

We present results of calculations of electron scattering by acoustic phonons in ID
quantum wires (QWIs) and 2D quantum wells (QWs), where we consider inelasticity of
this scattering in full detail. We develop procedure for inclusion of this inelasticity in-
to a Monte Carlo technique. Monte Carlo simulation results are obtained for GaAs QWIs.

H. Scattering Rates

The rate of electron scattering from the state k to the state k' with the assistance of
deformation acoustic phonon with wave-vector q is given by

W(k, k', q) 1 g(, +-± 2 6(e2, AE/T .), (1)

where V is the principal volume of the crystal, E. is the deformation acoustic potential, p
is the density of the material, w, = uq is the long wave approximation of acoustic phonon
dispersion, where u is a mound velocity in the material, and Ae is the energy separation
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between initial and final subbands. Here and everywhere below upper sign corresponds to
emission and lower sign to absorption of acoustic phonon. We will consider a rectangular
quantum structure with infinitely deep potent'al well embedded into another material with
similar elastic properties so that acoustic phonons can penetrate through the interface
between these materials. The major difference between bulk and LD electron scattering
comes from the overlap integral I = (',le'[). Integrating over the volume of the
quantum structure and neglecting umldapp processes we get

I IwI2 = Gn,ni.q, bk1Tq1.k'*'
IV12 = - C,.,, G5j 4. kq(,k2)1IDo)2q 111 1~,+ -+, (-+. (2)

2 [(2w)2q5L ul] [i - (-1)'+" cos(q5 L.)]
[(q5L.) 4 - 2T 2(q.L.) 2(l2 + 1,2) + wr4(12 -_12)2 "

where n is subband index for a QW; j and I are subband indices for a QWI due to size
quantization in y and z directions, respectively. Primed indices denote the subband of the
final state. The Kroenecker delta-function reflects momentum conservation in unquan-
tized direction(s). The form-factor G is responsible for the uncertainty of momentum
conservation in perpendicular to the quantum structure direction(s).

The total scattering rate from the state k of the initial subband to any state of the
final subband,

A(k) V (-3Jdq W(k,k',q). (4)

The complexity of the form-factor does not allow one to get analytical results without
certain simplifications. Let us consider now separately QWs and QWIs. For numerical
estimates we use parameters of GaAs quantum structure embedded in AlAs at T=30 K.

(a) Quantum Wells
The scattering rate of 2D electrons by acoustic phonons obtained from (7) for electrons

on subband n with wave vector k1l scattered to subband n' can be rewritten in the following
form:

E'mksT

where J,,,3 ,(k11) is a dimensionless function of the order of unity, given by

f= 0 La dqx f !!!E A ( hui) G',.,48 X

m - 0lci-()(kj1, 0 q, nn') (6)

We use the following notation in formula (6) : V is an angle between electron wave vector
before scattering k1l and electron wave vector after scattering 1". An absolute value of the
in-plane electron wave vector after scattering, Af1, is a solution of the energy conservation
equation. The function ./(z) = :/(e - 1) + x/2 x :/2 in eq. (6) is a dimensionless
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function associated with phonon occupation number, 6(k 1,, o, q., n, n') is an integer-value
function which is equal to a number of the roots of the energy conservation equation.

For the elastic approximation huq -- 0 we obtain the following expression:

ff•-(hl)= ( + .. ,)e(41 - •, + 2m
~ +2m

where e(z) is a unit step-function. The elastic approximation fails in the region of low
electron energy which amount for 1 - 5 meV for GaAs QWs. Mathematical complexity of
the problem does not allow one to solve it analytically. Figure 1 demonstrates the energy

dependence of the acoustic
0.0_ phonon emission rate in three

lowest subbands (intrasubband
transitions) of the 100A thick

I QW for T=30 K, obtained
.0.06 2- by direct numerical solution of
* Ieqs. (5) and (6). Instead of
I single-step-wise function which
C 0.04 follows frorr " e elastic approx-
a, imation, the emission rate is a
b smooth function of electron en-

0.02 ergy. The complex structure of

@2 the form-factor for transitions
within upper subbands results

0.00 0 in several plateau regions in theenergy dependence of the emis-
EM = EnOIW (oV) sion rate.

(b) Quantum Wires
Let us assume that q qr, where q+r =q. is a transverse component of phonon

wavevector and that huq < kBT. To meet both above assumptions it is required that
huqrm.. < kBT, where qT.., = wV/(j + j') 2 /L2 + (I + l')2 /L2 is roughly the maximum
transverse component of phonon wavevector where the form-factor is non-zero. Then after
summation of eq. (7) over k' and integration over q, we get

AX(e) EdkBT dqGd(7)

Here G stands for Gjs,b, G,,4 ,. The integration limits for absorption rate are imposed
by the form-factor which tends to zero above q,.... The uncertainty of momentum
conservation is roughly defined by qqT,.,, i.e., it increases with decreasing the transverse
dimensions of tht QWI. As the electron energy tends to zero the absorption rate saturates
since qr,, is nef equal to zero.

Let us consider the asymptote of very large electron energies e- Ae > huqT,... In this
case we may neglect phonon energy (elastic approximation). Note that for this asymptote
emission and absorption rates are equal. Then (7) turns into:

A(e) = (1lT 2 + _6jp)(1 + 1614') (8)
~.J~ft 2 2 2( E
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Thus the large energy asymptote diverges as e-112 function of electron kinetic energy
after scattering, the same as 1D density of states function. The large energy asymptote is
extended to low energy region in 11-4] to evaluate electron mobility. The scattering rate
within this elastic approximation is inversely proportional to a QWI cross section L. x L,.

Figure 2 demonstrates the d-
ifferencies between the scat-
tering rate dependencies on

10 electron energy calculated for
*a-o- (M: asmo'on QWI with cross section 250 xi~a • •M: si-nomo

--- sa (817ft) 150A2 within three different ap-
---- eq. (4): aborplon

- ----- sq. (4): esion proaches: elutic approxima-tion of eq. (8), the approach

Sof eq. (7), and the direct
cc 101 numerical integration of eq.
CO (4) without any simplification-

s. The correct inelastic treat-
2Wx1 So A! ment of acoustic phonon scat-

tering yields qualitatively dif-
ferent scattering rates. Erais-

10 1 1 sion and absorption rates with-
in the inelastic approach are

Mosetron Energy CoV) considerably different at low
energies.

There is no divergency of the scattering rates within inelastic approach. The energy
AuqT,., given by uncertainty of momentum conservation defines the position of the max-
imum on emission curve and coincides with the characteristic energy of acoustic phonon
interacting with electrons.

III. Results of the Monte Carlo Simulation

The necessity to allow for inelasticity of acoustic phonon scattering in Monte Carlo
simulations complicates the procedure of choice of the final states for scattered electron.
We have developed very efficient procedure for random selection of acoustic phonon energy
involved in the scattering. The essence of this procedure is that we first numerically
perform von Neumann procedure for a set of random numbers and tabulate the phonon
energy as a function of a random number. For a QWI we have solved the following
equation:

rI: -dqTF(qT) dqTF(qT) (9)

with respect to q;. for a set of 100 random values of r ranging from 0 to 1. Here the function
F(qT) is an integrand of eq. (7) and represents the scattering probability dependence on
the transverse components of the phonon wavevector. Since qT is directly related to the
phonon energy within approximation q. < 9r', one can find the desired phonon energy
for each value of r. A table of such values has been calculated for a set of electron energies

'Withn zmore accurate approach where q. is not neglected, the acoustic phonon energy is uniquely

related to q., so that this dependence can be used to generate the acoustic phonon energy [5].
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for emission and absorption of acoustic phonon separately. Then the choice of phonon
energy involved into a scattering event is just the generation of random number r and
the selection of the corresponding phonon energy value from the appropriate table. This
procedure essentially speeds up the Monte Carlo simulation.

To test the scattering rates and the Monte Carlo procedure we have simulated the
electron transport at low lattice temperatures. Monte Carlo simulations yield very accu-
rate thermal equilibrium energy and distribution function for electron system indicating
that acoustic phonon scattering is treated correctly. The elastic scattering model fails to
yield good equilibrium energy and distribution function. Figure 3 demonstrates low field

electron mobility in the QWI
with cross section 40 x 40A3 as
a function of lattice tempera-

* ture. One can see that elec-
tron mobility calculated within

"E 250x150 A2 elastic approach is significantly
10S 2 underestimated in the low tem-

"perature region. The reason for
- • I~ine C this is obvious: an overestima-
o tion of acoustic phonon scat-

S104 tering rate (especially emission
0 rate) at low energy region. It
o must be noted that in thicker

QWIs the discrepancy between
103 •low field electron mobilities ob-

0 100 200 300 tained within elastic and inelas-
Teanp Mrs (K) tic models is less pronounced

because inelasticity
of acoustic phonon scatering is weaker in thick QWIs.

We have also observed superlinear region on velocity-field dependence associated with
reduction of acoustic phonon scattering efficiency as the electron system gets heated. This
superlinear region appears only for rather thick QWI. In thin QWIs (cross section of the
order of 40 x 40A2) the acoustic phonon scattering is so strong and inelastic that it prevents
electron heating up to very high electric fields. The superlinearity on velocity-field depen-
dence is greatly overestimated within elastic approximation since elastic scattering does
not prevent electron runaway from the low energy region. As a result, the velocity-field
dependences calculated within elastic and inelastic approaches are considerably different.
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Highly Efficient Full Band Monte Carlo
Simulations

R. Kent Smith and Jeff Bude
AT&'T Bell Labs, Murray Hill NJ, 07974-0636

Abstract

We present a full band monte carlo algorithm based on phase-space sim-
plexes which has all of the advantages of analytical band monte carlo while
preserving the accuracy of a full band structure. An adaptive, contour-aligned
grid algorithm is used to represent the energy band structure within the ir-
reducible wedge and is calculated once for each semiconductor band. The
complexity of generating the adaptive grids in phase-space is more than com-
pensated for by the simplicity and efficiency introduced into the equations of
motion and final state selection, which are treated exactly within the physics
of the model. Consequently, our method confines simulation error to statisti-
cal error and a consistently bounded discretization error determined only by
the choice of phase-space grid and can be set to a user-defined tolerance. Re-
sults using this method show at least an order of magnitude improvement in
performance over previous full band codes.

Monte Carlo simulation has earned an important place in semiconductor transport
simulation because it offers a practical way of solving the full Boltzmann equation
- essential for a rigorous understanding of non-stationary/high-field transport which
includes impact ionization, hot carrier dynamics, and velocity overshoot. Naturally,
the more rigorously based the physics in the Monte Carlo simulation, the more accu-
rate and detailed the solution. The numerical solution of the Boltzman equation is
obtained by integrating particles along trajectories in phase space. The momemtumr
of each particle is abruptly changed when scattering events occur.

One of the most important elements in establishing an accurate physical model
is the inclusion of a full band structure (FB) which, for example, can be calculated
from empirical pseudo-potential or local density functional theory. Unfortunately the
inclusion of a full band structure considerably complicates the MC simulation. First,
the particle velocity is not simply related to k but is determined by the gradient
of the energy band. Failure to integrate the equations of motion exactly will result
is unphysical gains or loses in the particle energy. Secondly, the scattering rates
conserve energy which, for simple dispersionless phonon models, restricts the final
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state momentum, P, to lie on energy isosurfaces. For a general band structure, these
surfaces may be extremely complicated requiring elaborate searches of the Brilluoin
Zone for the final state momentum, k'.

The computation complexity of MC simulations may be significantly reduced if
an analytic expression is used for the band structure. Isotropic polynomial approx-
imations to the energy bands enable efficient and accurate calculations of the free
flight trajectories and final states momentum selection. Analytical bands (AB) are
rigorously justified for low field transport since the carriers remain close to the band
minimum, where the bands are parabolic. Although AB models are computationally
efficient, accuracy is sacrificed, at high energies, where simple band approximations
are difficult to construct.

We propose a FB MC algorithm [2, 3], based on simplexes, which has the com-
putational advantages of the faster AB simulators, while preserving the physics con-
tained in the full band structure. In k-space, the irreducible wedge is represented by
a contour-aligned tetrahedral grid. An adaptive algorithm is developed to approxi-
mate each energy band by a piecewise linear polynomial to a pre-defined accuracy.
Within each element, the equations of motion may therefore be integrated exactly,
thus conserving energy at each time step. Furthermore, the energy isosurfaces for the
entire Brilluoin Zone, may be readily calculated providing an accurate final k-state
selection. As a result, the simulation error to the statistical error inherent in MC,
and a consistently bounded discretization error deriving from the choice of grid in
phase-space.

Our algorithm represents phase space as a cartesian product of two simplex grids,
Tk x T.. In k-space, only the irreducible wedge, defined by the 48 elements of the
point group pertaining to cubic semiconductors is triangulated. A rotation matrix,
Q, is assigned to each particle rotates the position in the irreducible wedge to its
proper place in the full Brilluoin zone. In both spaces, piecewise linear polynomial
approximations are used to represent the electrostatic potential and each energy band.

Since the equation of motions are linear, particle trajectories may be computed
exactly. Pointers to adjacent elements are used to facilitate motion through the grid.
Neighbor pointers are also constructed at the phase space boundaries, where particles
may be either transmitted or reflected. Element pointers at reflected surfaces point
to themselves, where as transmitted particles reenter the phase space grid at some
other point. In either case, the simulation particles remain confined to the solution
domain and enough information is retained to reproduce the entire phase space.

The selection of the final state momentum is also exactly computed for piecewise
linear polynomial approximations. Since VE is a constant, the constant energy sur-
faces are defined by the intersection of a plane with the tetrahedron. An efficient,
single parameter, quadratic interpolation procedure may be developed when the ver-
tices of the tetrahedron are constrained to lie between two constant energy surfaces.
Each tetrahedra classified by the number of vertices lying on an given energy contour,
E,. The density of states is then characterized by the single interpolation parameter,
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O{E), and given by

V')(E) = (l_ -0)2 (1)

-"(E) f=z4!')#(l - 0) (2)
= =P(II)02 (3)

where 4(E) = (E - E,)/(Ei+1 - Ei) and E, < E < E,+,. The major advantage of this
decomposition is that global quantities, obtained by summing over tetrahedra, may
be interpolated in the same manner. The selection of the final state momentum is
readily computed by proceeding down a k-space tree. The rotation matrix, Q, is first
determined, then the tetrahedra type, and finally a single tetrahedron containing the
final state. In addition to 4, two uniformly distributed random variables are sufficient
to determine the barycentric coordinates within the tetrahedron. The final state
momentum is then computed by a linear interpolation of the tetrahedron vertices, ki.

Since the the trajectory calculations and the selection of the final state momentum
are performed exactly, the only numerical error encountered in the solution of the
discretized BTE is the statistical error associated with sampling the phase space.
This error is bounded during each monte carlo run by monitoring the fluctuations
in computed quantities. However, a second source of numerical error arises from
approximating the continuous BTE with a discrete set of equations. Complete control
of the numerical error is obtained by constructing meshes that provide a consistent
bound on the discretization error.

We use an adaptive grid algorithm to construct meshes that represent functions in
both k-space and x-space to a desired accuracy. These algorithms are based upon esti-
mating the discretization error, e, in approximating continuous functions by piecewise
linear polynomials. In x-space, simple, inexpensive error estimates are constructed
directly from Poisson's equation, [1]. These estimates provide both lower and upper
bounds to the true discretization error, 0 _< Ci1V1IeI _5 1110' - 01h,11 - C2111eIII For
k-space grids, the discretization error is computed as deviations of the true band en-
ergies from piecewise linear approximations. The meshes are continually refined or
unrefined until l' ll < 6 where 6 is a user specified error tolerance. By controlling
the discretization error of these phase space grids, we can insure that numerical error
associated with our MC simulations is bounded.

Several considerations are necessary to produce an acceptable, contour-aligned,
tetrahedral grid for our monte carlo simulations. Unlike conventional adaptive refine-
ment algorithms, each grid edge must lie either on an contour or connect two adjacent
contours. Mesh refinement is accomplished by adding new energies contours rather
than simply refining element edges. Sharp cusps are formed in the higher energy
bands, due to band crossings, which produce discontinuous changes in VE(k). These
features significantly efect the accuracy of any polynominal approximation to the en-
ergy bands. As with any mesh generation code, the grid should consist of reasonably
shaped tetrahedra.
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Table 1: Tetrahedra Grid Summary
Band Vertices Tetrahedra Contours Quality

1 349 1198 24 0.567
2 530 2268 19 0.611
3 414 1617 18 0.590
4 1343 6143 16 0.529
5 1658 8077 17 0.564
6 613 2431 13 0.456

7 419 1542 I1 0.421

Critical points and ridge lines play an essential role the production of accurate
contour-aligned grids. The role of critical points, k such thatVE(k) = 0, is twofold.
Local extrema make excellent vertices, especially for coarse piecewise linear approxi-
mations. Also, saddle points describe how components of contours split and connect
[4, 9, 8, 10]. The role of ridge lines, extrema in the curvature of the isosurface, is used
to decompose the space between two contour surfaces. When a ridge line connects,
say, a minimum to an adjacent saddle point, the "watershed" regions between ridge
lines are empirically observed to provide a good starting decomposition.

The initial grid is generated from a skeleton of each energy band. The skeleton
consists of a set of ridge lines and critical point energies that divide the wedge into
several regions. Within each region, vertices are generated along contours that ad-
here to both the wedge boundaries and ridge lines. Curved region boundaries are
represented by piecewise linear line segments with sufficient resolution to capture the
geometry of the boundary. Contour-aligned grids are produced by refining grid edges.
Edges that cross more then one contour are divided by adding a point at the midpoint
contour energy. Edges that lie on a contour are refined either to reduce the discretiza-
tion error or to improve the quality of the resultant tetrahedra. After all edges are
divided at most once, the grid is then retriangled producing a new set of tetrahedra.
The overall accuracy of the contour-aligned grids is controlled by selectively adding
new energy contours when necessary.

The lowest seven silicon energy bands were computed using the nonlocal pseudo-
potential of Chelikowsky and Cohen [5] . The first 3 bands correspond to holes
while the last 4 bands correspond to electrons. To easily accommodate interband
transitions, a single set of energy contours was calculated for all bands. A error
tolerance of 6k = 0.02E(k) was used in generating all grids. The low energy spectrum
was further selectively refined to produce an error if 6 = 0.002ev near the minimum
energy. As shown in Table I , accurate, high quality, contour-aligned tetrahedral
grids and be obtained with relatively few grid points. The grid for the lowest electron
band in the x-y plane of the irreducible wedge is shown in figure 1.

The performance of our algorithm is compared with several existing monte carlo
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Table 2: Performance Comparison
Code Band CPU Time(YMP)I

Structure Time Step Total
IBM Full 5.00 100.0"

Illinois Full 1.5 25.011
BEBOP Analytic 1.0 2.011

MMC Full 1.0 1.0o

"estimated

c-. s in Table 2. The test example consisted of simulating 10000 electrons in a
constant electric field of 105V/cm for a simulation time of 1 picosecond. To obtain a
fair comparison, the full band Illinois code [11], the analytic band BEBOP code [12]
, and our full band code, MMC, were run on the same machine, a Cray YMP. The
CPU times for IBM monte carlo code 17) were taken from published data [6]. These
timings are qualitative since a different problem was solved on a different machine.
Large time steps may be taken for our simulations and BEBOP, since the equations
of motions and the final state energy selection are computed to the machine precision.
Small time steps for the other full band codes are necessary to integrate the equations
of motion to a reasonable numerical accuracy due to the general band structure. The
significant increase in CPU time of the IBM code as compared to the Illinois code is
largely attributed to the exhaustive time spent in the final state momentum selection.
By any measure, our code combines the rigorous physics of full band simulations with
the computational efficiency of analytical band models.

A computationally efficient, full band structure, monte carlo algorithm has been
developed. The algorithm is based on a simplex decomposition of phase space, and
has all of the advantages of analytic band simulators, while preserving the physics
contained in the full band structure. The work required for free-flight computations
as well as final state selection is considerably reduced through the use of piecewise
linear approximations to both the energy and the electrostatic potential. This method
treats motion in k-space and x-space symmetrically allowing exact integrations of the
equations of motion and final state selection.

In k-space, the irreducible wedge is represented by a contour-aligned tetrahedral
grid. An adaptive grid algorithm is used to generate a mesh that approximates the
energy bands to a pre-defined accuracy. Furthermore, the equal-energy surfaces may
be readily calculated providing an accurate final k-state selection. As a result, the
simulation error is reduced to the monte carlo statistical error aud a consistently
bounded discretization error deriving from the choice of grid in phase-space.
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Ionized Impurity Scattering Model for Monte Carlo Calcula-
tions

Jim Dewey and Mohamed A. Osman

School of Electrical Engineering and Computer Science
Pullman, Washington, 99164-2752

Abstract

An ionised impurity scattering model for Monte Carlo calculations is proposed. This
model includes the following four corrections to the simple Brook-Herring model: 1)
momentum dependent screening, 2) the second Born term for single impurity scattering, 3)
dressing effect of impurities on electron wavevectors, 4) scattering from pairs of impurities.
Monte Carlo calculations are performed for majority electrons in silicon at 300K and 77K
with donor concentrations from 101 5cm- to 102cm- Calculations show this model
provides a substantial improvement to models based on the first Born approximation.

I. Introduction

Monte Carlo techniques have become a popular method to simulate the characteristics of
modern semiconductor devices. In these device simulation programs, an ionised impurity
scattering model based on the first Born approximation is commonly used[1,2]. For many
materials, such as silicon and GaAs, models based on the first Born approximations over-
estimate mobility for concentrations greater than 10 16cm-3 at room temperature[3]. Witn
ionized impurity concentrations in many semiconductor devices greater than 101crM-3,
an improved impurity scattering model for Monte Carlo calculations is clearly needed.
Recently Kay and Tang[4] proposed an improved model for Monte Carlo calculations. 4
Their model included phase-shift analysis and multiple impurity scattering where they
calibrated their model to fit experimental data. Fischetti[5] showed excellent quantitative
agreement with experimental data for both n and p doped silicon at 300K by including
plasmon scattering to phase-shift analysis and short-range carrier-carrier scattering. An-
other approach which is becoming more popular when simulating coulombic interactions
is Molecular Dynamics. Ferry and workers[6] obtained excellent agreement with experi-
mental results for GaAs at 77K. Molecular Dynamics has the disadvantage of requiring
large amounts of CPU time.

In this work we include four corrections to the simple Brooks-Herring impurity scattering
model and incorporate these in an Ensemble Monte Carlo program. These corrections
include momentum dependent screening, dressing effects on the electron wavevectors, the
second Born approxmation, and multiple-impurity scattering. Mobility is calculated for
majority electrons in silicon at 300K and 77K for impurity concentrations ranging from
1015cm-3 to 1020cm-3.
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H. Electron Transport Model

The electron transport model contains all six non-parabolic ellipsoidal x valleys. Three
intervalley #-type phonons between parallel valleys and three intravalley f-type between
perpendicular valleys, elastic acoustic phonon scattering, electron-electron scattering and
impurity scattering are considered. The phonon scattering and material parameters given
by Brunetti and coworkers[7] and the phonon scattering rates calculated by Jacoboni and
Reggiani[81 are used in this work. Electron-electron scattering rates take into account the
ellipsoidal nature of the conduction band as developed by Osman and coworkers[9]. The
impurity scattering model is discussed in the next section.

MI. Electron-Impurity Scattering Model

A review of the procedure used to implement corrections to the basic Brooks-Herring
impurity scattering model is given in this section. A more complete description will be
published elsewhere[10].

As discussed in the introduction, four corrections to the standard Brooks-Herring impurity
scattering model are implemented in our Monte Carlo program. The standard Debye
screening length is modified by including a momentum dependent correction using the
equation developed by Chung and Ferry[ll]. Momentum dependent screening results in a
scattering rate which is dependent upon the scattering angle 0. For a screened coulombic
potential based on the first Born approximation the scattering rate becomes

S(k,9) = fl(k) 1 (1)

where fl(k) is the wavevector dependent constant normally seen in the Brooks-Herring
scattering rate equation. This scattering rate cannot be calculated in its present form,
since the state after scattering is not known prior to the scattering event. This is dealt
with in Monte Carlo calculations by using a large correction to the inverse screening length
resulting in a scattering rate with internal self-scattering. When impurity scattering is
chosen, the scattering angle is selected using a rejection method. Once the scattering
angle is known, it is then determined whether impurity or self-scattering terminated the
particle's free flight. 4

The three other corrections are developed following a procedure similar to Moore[12] which
is also described by Langer[13] and Rickaysen[14]. The basic procedure is to expand the
self energy and define a dressing function as the real part and a width function as the
imaginary part of the self-energy terms[15]. In this work, we included the first two terms 4
of the self energy for single impurity scattering which can be thought of as the first and
second Born term and the first term for scattering by a pair of impurities. The dressing
effect on the electron wavevectors is included only on the first single impurity term. The
dressing effect on electron energy was small compared to other the corrections, this was
also observed by Moore[16], and is not included.

When the dressing effect of the impurities on the electron's wavevector is included, the
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Figure 1: Majority Electron Mobility as a function of ionised impurity concentration for
silicon at 300K

scattering rate based on the first Born term becomes

S&,.•(k) = f• I - 8Ma4e (# + 4k2)" - (2)

where S,& is the scattering rate using the Brooks-Herring model, n is the impurity con-
centration, m is the electron mass, e is electron charge, e is the material constant, and A
is Planck's constant. If momentum dependent screening is used, Sj, is given by equation
(1) and is incorporated in the same manner.

The scattering rate for the second Born term is given by

-63 4 -sin(9/2)(1 + y + 4x)(+

where x= sin2(=/2) and V = 4k2/• 2 . Equation (3) is integrated numerically over 9
to obtain the scattering rate and a rejection method is used to determine the scattering
angle 9. As observed by other researchers[16], the correction to mobility by the second
Born term is argp in region where the first Born term alone is valid k2/# 2 >> 1. Ths is
dealt with by setting the scattering rate for the second Born term to zero when the first
Born term alone is valid.

The multi-particle transition rate is found by considering only the lowest approximation
for scattering from a pair of impurities. This is the same form as developed by Moore[12]
and Rickayenj14]. The resulting scattering rate is quite complex and will not be given
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Figure 2: Majority Electron Mobility as a function of ionized impurity concentration for

silicon at 300K

here. Multiple impurity scattering is incorporated in the same manner as the second Born
term.

IV. Results

Figures 1 and 2 show a comparison of the basic Brooks-Herring model, the model dis-
cussed in this paper, and experimental data[17] for silicon at 300K and 77K, respectively.
As figure 1 shows, the proposed model clearly improves upon the Brooks-Herring impurity
scattering model and compares favorably with experimental data over the range of con-
centrations considered. Figure 2 shows the discrepancy between the Brook-Herring model
and experimental data widens as the temperature is decreased. Again, the proposed model
clearly improves upon the Brooks-Herring model.

V. Conclusion

We have proposed an improved impurity scattering model for Monte Carlo calculations.
The improved model includes four corrections to the Brooks-Herring impurity scatter-
ing model. Results for a-doped silicon at 300K and 77K show our model substantially
improves mobility calculations compared to models based on the first Born approximation.
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Abstract
We present a numerical study of the non-equilibrium properties of quasi-one dimensional
systems with different confining geometries. Carrier cooling following a laser photoex-
citation is analyzed by means of a Monte Carlo simulation which includes all relevant
scattering mechanisms. Our results indicate that, for wire made available by todays
technology, the carrier dynamical properties of these systems are not so different with
respect to bulk GaAs.

I. Introduction
The recent advances in compound semiconductor technology have allowed the fabrica-
tion of wire-like regions where quasi ID confinement is achieved in a narrow-band-gap
semiconductor material surrounded by another large-band-gap semiconductor [11. In
particular, such wire-like structures have been fabricated with rectangular and V shaped
cross sections whose dimensions are comparable to the carrier coherence length [2,31.
In such structures, carrier transport characteristics are expected to differ from the bulk
case as the carrier-phonon scattering rate is affected by the changes in the electronic as
well as in the vibrational properties induced by layering [4].

Much of the theoretical work dedicated so far to one dimensional structures has
covered mainly the so called "extreme quantum limit", i.e. the case in which only one
subband is occupied [1,51. For wire structures available today, such limit can only be
reached under extremely low temperature and electric field conditions. Usually, several
subbands are present, and their contribution to carrier transport has to be taken into
account.

The aim of the present contribution is to extend the analysis of charge transport
in quasi one-dimensional systems to nonequilibrium conditions and nonlinear regimes,
by studying realistic wire-like structures where many subbands are normally occupied.
This is performed by means of an Ensemble Monte Carlo simulation which allows the
study of dynamical evolution of photoexcited carriers, a situation often achieved, for
instance, in ultrafast optical experiments. By using the electronic levels and wave
functions as derived from an exact solution of Schr6dinger's equation, we evaluate the
electron-phonon and electron-electron scattering rates which are, in turn, used in the
simulation to study the carrier relaxation process. In addition, the method allows us to
easily include effects like degeneracy and non-equilibrium phonons.
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We will investigate two different type of GaAs-based structures, namely rectangular
wires obtained from multi quantum well samples by chemical etching [2,61 and V-grooved
wires obtained by growing a thin quantum well on an etched V-shaped profile [7].

II.Electronic states and electron-phonon interaction
Chemical etching gives GaAs-based rectangular quantum wire surrounded along one
of the confinement directions by AIGaAs layers, and and free-standing along the other
confinement direction [6]. In this case, the conduction band electrons can be reasonably
described by a factorized envelope function of the type 4'(z)i(y)eik z, where O,(z) and
0(y) are respectively the solution of the one dimensional Schr6dinger equation in a
rectangular potential.

The situation is more complicated for the V-grooved structure. There, in order
to study the energy levels and associated eigenfunctions of a two-dimensional V-like
profile, we consider the following single-particle Schr6dinger equation

(i + V(zY)) O(X) = V,(XY)(1)

where V 2 denotes the two-dimensional Laplace operator and V(z, y) the two-
dimensional potential profile. By considering the following set of two-dimensional
planewaves over a rectangular domain n:

0b(kz I ky; X = Y) ei(k+ ), (2)

the Schr6dinger equation (1) can be rewritten as

2m Y + V (kf, ky;k' , k,)) c(k'•,k') = (k.,,ky) ,(3)

where the coefficients c(k' , k,) are the Fourier component of the total wavefunction
O(-,y) and V(k., ky;k.,k,) are the matrix elements of the potential profile in the
plane-wave basis given in Eq. (2). By means of a standard numerical procedure, we
derive the eigenvalues E corresponding to the energy levels and the Fourier coefficients
c(k', k'V) of the corresponding eigenfunction. Once such coefficients are known, we
obtain for each energy level E the corresponding eigenfunction according to p(x, y) =

:k',k• c(k'f,k')0(z,y). Our numerical results have been obtained for the case of a
V-like potential profile shown in Fig. 1. The V-like region is caracterized by a potential
V1 and all the surrounding region by a potential V2. Fig. 2 shows a plot of the carrier
density corresponding to the first four electronic levels. As expected, the ground state
exibits a single maximum in the center of the V-like region, while the excited states
extend over the whole V-groove exhibit an increasing number of maxima as the order
of the level increases.

Starting from the electronic wave functions and energy levels just described, we have
computed the electron-phonon scattering rate for the two structures, assuming in both
cases bulk LO phonon modes. This approximation should be quite acceptable in these
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systems, which have a large spatial extension, due to the recent findings that the overall
electron-LO phonon scattering rate in quantum wells does not differ significantly from
the bulk one once the contribution of confined and interface phonon modes is properly
accounted for [8]. Figures 3 (a) and (b) show respectively the scattering rate for the
rectangular quantum wire and the V-grooved wire (solid lines) [9], compared with bulk
GaAs rate (dashed line). In the V-grooved structure, only the first five energy levels
are accounted for. Apart from the different position of the energy levels in the two
quantum wires, the behavior is very similar and the overall scattering rates in both
wires is similar to that of the bulk.

"',"(a) (b)

..
6

0

~ '5 I

.4.

0 2

0 L I I I I I I I I

0.00 0.05 0.10 0.15 0.20 0.00 0.02 0.04 0.06 0.08 0.10 0.12

Energy (eV) Energy (eV)
Fig. 3. Electron-phonon scattering rate for (a) a rectangular cross section quantum
wires and (b) a V-grooved quantum wires (solid lines), compared with the bulk
scattering rate (dashed line).

III. Simulation results
As the scattering rate for the V-groove and the rectangular wire are similar we per-
formed the similation only for the rectangular wire. We espect that the results will be
qualitatively the same for the V-groove wire. Our Monte Carlo simulation accounts for
the electron-polar optical phonon as well as the electron-electron interaction for both
intrasubband and intersubband transitions. The model used here is similar to that de-
scribed in ref. 10 but the effect of non-equilibrium phonons have been accounted for
with a rejection technique. The study of the effect played by the hot phonon popu-
lation is more difficult in this system, compared to the bulk case, due to the lack of
isotropy. The phonon population has been collected using a three-dimensional mesh.
The cooling of the excited carriers following a laser excitation is shown in Fig. 4 (a),
(b) and (c) respectively for the one dimensional densities of 10' cm-', 3 x 10s cm-1
and 106 cm-'. As already verified [11] the cooling in the quantum wire (solid line) is
slower compared to the bulk (dashed line) due to the reduced intersubband scattering
rate, but this effect is modified by the presence of the hot phonon population. At very
low densities, i.e. when the phonon population is not driven out of equilibrium, there is
a big difference in the cooling between the wire and the bulk. Vice versa at the higher
density this difference is strongly reduced. This effect can be clearly attributed to the
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reduced efficency of hot phonon reabsorption in the quantum wire caused by the spatial
anmotropy of the system.

0.20 , , '(a) ' ' '(b) ' ' W(c)
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Fig. 4. Electron mean energy after a laser photoexcitation in a quantum wire
(solid lines) for three different densities: (a) 105 cm- 1, (b) 3 x 10' cm- 1 and (c)
106 cm- 1, compared with the equivalent results in bulk GaAs (dashed lines).

In conclusion, we have shown that the Monte Carlo method can be easely applied
to the study of low dimensional systems described by any type of geometrical potential
confinement. The dynamical properties of the carriers can be invesitgated in strongly
non-linear and non-equilibrium conditions with any number of occupied subbands. Our
results show that, for the relatively large wire made available by the actual technology,
the difference between the behaviour of these system and a bulk system is much lower of
that predicted and probably only in systems extremely narrow a faster carrier transport
will be found.
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Abstract

A 2D multilayer MOSFET simulator has been developed, using self-consistently coupled
ensemble Monte Carlo and 2D Finite Element Poisson Solver algorithms. The simulator is
used to investigate the operation of sub-micron delta-doped MOSFETs, in order to assess their
suitability for high density logic applications. An operating window is observed within which
the delta-doped devices exhibit a significant reduction in surface carrier density, relative to
conventional MOSFETs, implying reduced surface scattering and gate injection.

I. Introduction

In order to achieve Ultra Large Scale Integration (ULSI) densities in CMOS, the gate lengths
of silicon MOSFETs must be reduced well below lLm. It is well known that sub-micron
MOSFETs are prone to a number of short channel effects: increased lateral electric fields
result in enhanced hot carrier generation, whilst increased vertical fields pull carriers hard
onto the Si/SiO2 interface - leading to increased interface scattering and hot carrier injection
into the SiO 2 layer. The latter effect results in an accumulation of trapped charge in the oxide,
which causes eventual device failure by shifting the threshold voltage and reducing the ability
of the gate to modulate charge.
These problems may be alleviated by using a delta doped MOSFET structure [ 1,2], in which
conduction occurs, not at the Si/SiO2 surface, but in an ultrathin, highly doped layer located
typically 200-400A below the interface. Thus, both interface scattering and hot carrier
injection should be reduced: however, realistic modelling work is necessary to determine the
efficacy of the delta layer in confining carriers, its effect on the surface carrier density and
energy distribution, and the extent of any consequent reduction in hot carrier degradation.
In this paper, we describe the development of a 2D self-consistent Monte Carlo simulator, and
its application to modelling electronic transport in delta-doped MOSFETs. In very short gate
devices transport can no longer be described in terms of steady state mobilities and saturation
velocities, and the traditional drift-diffusion approach to device modelling becomes
inadequate. The Monte Carlo method is well established as a powerful technique for
modelling highly non-equilibrium transport phenomena, and can yield a detailed microscopic
insight into the operation of semiconductor devices. The initial investigation presented here
concerns the basic issues of transistor operation and carrier distribution in short gate delta
doped MOSFETs, and the effect of the delta-doped layer on the surface electron density.
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II. The Simulation Program

We have developed a high specification 2D simulation program for sub-micron multilayer
MOSFETs. The program consists of an ensemble Monte Carlo algorithm self-consistently
coupled to a 2D Finite element Poisson Solver. The 2D Poisson equation is re-solved every
lfs: such a short timestep is necessary to avoid undersampling of the plasma oscillations
which occur in the highly doped source and drain implants of silicon MOSFETs.
The Finite Element mesh can be defined by the user, but is restricted to a rectangular grid
format. This restriction greatly simplifies the determination of the 2D charge density in the
device from the distribution of Monte Carlo particles. The ability to specify non-uniform
mesh spacings is essential for both delta-doped and conventional MOSFETs, in order that the
potential at, in the former case, the delta-doped layer, and, in the latter case, the surface
inversion layer, may be accurately modelled.
Electronic transport in the MOSFETs is modelled using a nonparabolic, ellipsoidal description
of the 6 silicon X-valleys Intervalley, and acoustic intravalley phonon scattering is included
using the parameter set recommended by Brunetti et al.[3], which was found to produce good
agreement with experimental drift velocity data. Impurity scattering is included via the
Brooks-Herring model.
The effect of degeneracy (Pauli exclusion) is modelled using the approach described by Lugli
and Ferry [4], in which the probability that an electron is scattered into a state of energy E is
weighted by 1-f(E), where f(E) is the local electronic distribution function. In our simulation,
the distribution function may be sampled in up to 8 different spatial regions - including the
source and drain implants, and sections along user defined surface and buried layers - to
account for spatial variations in electron density and carrier heating.
In order to model self-consistently the electrostatic potential at the pn junctions between the
implants and the channel region, a 2D hole density is included in a zero current (fixed quasi
Fermi level) approximation, as described by Fischetti and Laux [5]. A damping scheme is
employed to ensure a smooth convergence to the fixed quasi Fermi level condition. The effect
of the hole density on the electrostatic potential is particularly important for very short gate
devices, where the acceptor density must be increased in order to combat drain induced barrier
lowering and punchthrough.
A particle replication scheme [6] is utilised to increase the sampling capability of the
simulator in the channel region of the devices. For a replication factor M, any particle
entering the channel region is replicated M-1 times. Particles attempting to enter an implant
region are annihilated with a probability (M-1)/M. Correspondingly, all particles in the
implant regions have an associated charge M times greater than those in the channel region.
The source-drain current is calculated by summing the x-component of velocity for all
particles located between the source and drain implants [7]. This method enables a much
larger sample to be used than in the traditional approach of counting particles emitted/injected
at the source and drain contacts.
Several authors have modelled surface scattering in MOSFETs by allowing both specular and
diffusive reflection of particles which impinge on the oxide interface [8]. Our program allows
any proportion of diffusive reflections to be specified; however, for this particular
investigation, we have used specular reflections only. The extent of surface scattering is
primarily important in determining the relative speed of delta-doped and conventional
MOSFETs, an issue which will be the subject of a separate investigation. For the same reason
we have not, at this stage, included any sophisticated description of impurity scattering in the
delta-doped layer: such refinements may readily be made, as and when required.
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The program runs for typically 2-5 hours per bias point on an HP 710 workstation. The actual
run time depends on the device size and bias conditions, with simulations of shorter devices
generally taking less time. Access to a large networked cluster of workstations at Newcastle
means that a simulations for a whole set of bias points can be run in parallel, on the same
timescale.

MI. Results

We have modelled a 0. l pm delta-doped MOSFET with the following specification. The delta
doping dose was 1012cm-2 - implemented as a 20A doping plane, with a bulk doping density
of 5xI0 18cm-3. The delta-doped layer was located 200A below the Si/SiO2 interface. A
doping density of 2x10 19cm-3 was used for the source and drain implants: whilst this value is
lower than those encountered in some MOSFET structures, it was found sufficient to define a
flat potential across the implant region - hence providing a suitable model of an ohmic
contact. The implant depth was taken as 500A, and a length of 1000A of each implant was
included in the simulation. Again, this length was found sufficient to model the ohmic contact
and the surrounding potential. The use of higher implant doping densities, or the inclusion of
a greater length of implant, leads to large increases in CPU time, with no significant gain in
physical information or quantitative accuracy.
Short gate MOSFETs can suffer from high leakage currents due to drain induced barrier
lowering. The effect can be alleviated by increasing the substrate doping and, in common
with previous reports on 0. 1jim conventional MOSFETs, we have specified a doping density
of 1017cm-3 for the p-type silicon substrate. Threshold voltage shifts are also a problem in
short gate FETs: we have chosen an oxide thickness of 50A, in order to reduce the gate
voltage swing required to turn the device off. Assuming an n-type polysilicon ohmic contact,
our simulations predict a threshold voltage of around -1.5V for the device under
investigation. Obviously, the threshold voltage varies with the delta layer depth and dose. We
have used a drain bias of IV in our simulations, reflecting the reduced supply voltage
anticipated for use in ULSI.

0 500 1000 1600 200 2500 3000 0 500 1000 1500 20030 2500 3000

Figure 1. Steady state electron distribution: (a) V;=O0V, VDr=lV (b) V(6 =0.75V, VD=IV
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Figures 1(a) and (b) show instantaneous plots of the 2D electron distribution in the device,
during steady state operation, for gate biases of OV and 0.75V. Figure 1(a) shows conduction
occurring well below the oxide interface; however, it is clear that the delta layer does not
provide strong carrier confinement, with electrons travelling in a very broad current channel.
On the other hand, in figure 1(b), for VG = 0.75V, an inversion layer has formed at the
interface; the device is now operating primarily in a surface channel mode. This type of
transition has also been observed in drift-diffusion modelling of long channel devices [9].
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Figure 2. Conduction band edge profile vs. vertical distance, with 4000A corresponding to the oxide interface.
For each gate bias, a set of six 'slices' of the potential profile are shown, taken at 200A intervals along the channel
from souce to drain. The profiles corresponding to the endpoints of the channel are pinned close to the source
and drain biases for most of the vertical distance shown, whilst the other four profiles appear in descending order
moving along the channel from source to drain.
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Figure 3. Electron density vs. distance from source to drain: (a) at the oxide interface, (b) along the delta-layer

Figure 2 shows several sets of vertical ID slices through the conduction band edge profile,
for a range of gate biases. In this figure it can be seen that the potential 'notch' caused by the
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delta layer is quite shallow and, as the gate bias is increased, the potential at the oxide
interface drops below that in the delta layer, along most of the channel length. Figures 3(a)
and (b) show the electron density along the surface layer and the delta layer, for the same
range of gate biases. Comparing the two figures, it is clear that the surface electron density
exceeds the delta layer density for all the gate biases shown except for VG = 0. This
conclusion is consistent with the potential profiles shown in figure 2, which also indicate
greater surface accumulation for VG > OV. At VG = OV the drain current for this device is
0.21mnA per micron gate width. For comparison, we simulated a 0.11.m conventional
MOSFET with the same implant, oxide and substrate specification. Approximately the same
drain current, 0.2lmA/Itm, was obtained for a gate bias of 0.3V. In figure 4 we have
compared the surface electron densities for the two devices. The surface electron density for
the delta doped device is less than one third of that in the conventional MOSFET, for the same
drain current. An equal current comparison was also performed for the VG = 0.25V bias
condition on the delta doped device, and a reduction in the surface electron density - by a
factor of approximately 2.5 compared to the conventional device - was still found, even
though the delta-doped MOSFET showed appreciable surface conduction.

1E20

'• EIQ Figure 4. Surface electron density vs. distance from
source to drain for a 0.1 gm delta doped MOSFET

(dFET) and a conventional surface channel deviceS~(sFET)
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Obvicusly, a different result may be obtained by varying the depth of the delta-layer below the
oxide interface. We have carried out simulations of devices with delta-layer depths of 100A,
which show that the conducting channel spreads up to the oxide interface, even when no
surface inversion layer is formed. Conversely, further reductions in surface carrier density may
be achieved by increasing the delta-layer depth, but this reduces the transconductance and the
threshold voltage: beyond a certain depth, gate control can be lost altogether [9].

IV. Conclusions

We have used a 2D multilayer MOSFET Monte Carlo simulator to investigate the operation of
0.l1 gm delta-doped MOSFETs. The devices have an operating 'window' of gate biases within
which the conducting channel is centred on the delta-doped layer. In this mode, a substantial
reduction in the surface carrier density can be obtained, relative to conventional MOSFETs,
implying consequent reductions in surface scattering and gate injection. Outside this
operating window, a parasitic surface channel is formed, and the above advantages are
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diminished. The operating window is large enough to be compatible with logic operation at a
reduced supply voltage of lV.
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Abstract
As semiconductor devices continue to shrink in size, quantum effects are beginning to
become important in their operation. In this paper, we discuss some approaches for including
the quantum effects in device modeling.

L Introduction

The transport of camers in semiconductors and in ultra-small semiconductor devices has long
been a subject of much interest, not only for material evaluation, but also in the realm of
device modeling and, more importantly, as an illuminating tool for delving into the physics
governing the interaction of electrons (or holes) with their environment. The scaling of ULSI
device dimensions to future chips indicates that we will eventually see devices with gate
lengths at the 0.05 pam level. Very few laboratories have produced even working research
transistors with gate lengths on the 50 nm scale and little is understood about the limitations
(from the physics) that will determine whether or not these devices are practical. On the
other hand, when devices of 30 nm (or less) gate lengths are made, it is found that their
performance is different from that of current FETs. Research devices with gate lengths of
25-80 nm clearly show that tunneling through the gate depletion region is a major contributor
(if not the dominant contributor) to current, and gate control is much reduced due to this
effect [1-3]. Even in MOSFETs, quantization is found to occur in the channel, which affects
the overall performance of the devices [4]. In consequence, it appears that more detailed
modeling of quantum effects needs to be included in device modeling for future ultrasmall
devices.

There are several approaches that have been used to model quantum effects in semiconductor
devices (of varying levels of device complexity). In this paper, we will try to give a short
overview of some of these approaches, and indicate how they are similar and how they differ.
In the next section, we discuss how quantum modeling differs from semi-classical modeling.
We then turn to a description of the various quantum "distribution" functions, discuss their
equations of motion, and the levels of complexity. In each case, simple examples are
described where the approach has been used with some effectiveness.

H. How does Quantum Modeling Differ from Classical Modeling?

Generally, modeling of quantum phenomena is more complicated than modeling of classical
and/or semi-classical phenomena. For instance, the energy-conserving delta function used in
computing scattering rates with the Fermi golden rule is no longer valid, as energy and
momentum become separate dynamical variables. Thus, we are forced to add a method of
computing the spectral density, which relates the energy to the momentum, in addition to
having to compute non-equilibrium distribution functions (or various moments of these). To
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be sure, in some approaches this is finessed by using single-time functions, such as the
density matrix and the Wiper distribution function, which essentially integrate out the
spectral function. But, this is accompanied by the full non-local nature of the potential
interactions becoming explicit in the dynamical variables; i.e., the potential becomes a two-
point function. Let us consider further how this nonlocality arises. Consider a simple
potential barrier V(x) = VoU(-x), where u(x) is the Heavyside step function. We assume that
there is some density existing in the region x > 0, and the question is how the density varies
near the barrier, a quite typical problem in introductory quantum mechanics, except here we
have a statistical mixed state to describe. In Fig. 1, we show the Wigner distribution function
for this case (for parameters appropriate to GaAs, with n = 2 x 101 cm-3) for Vo-+ 00. We
note that far from the barrier, the distribution approaches the classical Maxwellian form, but
near the barrier, it differs greatly. The repulsion from the barrier is required by the vanishing
of the wave function at the barrier, but the first peak away from the barrier (in the wave
function) occurs closer to the barrier for higher momentum states. This leads to much of the
complication evident in the figure. The overshoot occurs to accomodate the need for total
charge neutrality. Classically, in the absence of self-consistency, the density would be
uniform up to the barrier, and the differences are the result of the quantum mechanics. This
variation exists over a distance of the order of several thermal de Broglie wavelengths, which
provides a spatial scale length. In GaAs, at 300 K, this is about 5 nm for electrons, and of
course increases with the inverse square root of the temperature as the thermal de Broglie
wavelength is given by XD = 0I2/2mkBT)I12. Thus, nonlocal variations can be expected over
a range of 10-20 nm even at room temperature!

-

Figure 1. The Wiper distribution function for an infinite barrier, in arbitrary units [5].

It is clear that the density no longer varies simply as exp(-13V), where 13 is the inverse
temperature, and that modifications to the statistical mechanics need to be made. The
development of quantum corrections to statistical thermodynamics, especially in equilibrium,
has a rich and old history. Unfortunately, there is no consensus as to the form of the quantum
potential correction to this simple exponential. If we could find such a correction, it could be
utilized in the semi-classical hydrodynamic equations, and most further quantum
complications ignored. The various forms of the quantum potential, for use in classical
hydrodynamic equations, has recently been reviewed [6]. One form that has been used [7]
introduces a quantum pressure term as a modification of the electron temperature, through

3 3B~ - (1)kBTeff = 2 ! n(n) (1)

although other work has reduced the last term by a factor of 3 [8,9]. The form of the last
term in (1) was originally derived by us and is often termed the Wigner potential [101.
Although the results obtained using this model are in agreement with the intuitive
expectations, it should be noted that the correction term is an average and does not have the
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momentum dependence expected from Fig. 1. A more recent derivation overcomes this
limitation [6], but has not been tested in actual simulations as yet.

Another problem with the use of quantum approaches to device modeling is that most
quantum discussions, especially those of quantum transport, tend to revolve around closed
systems, whereas most devices are open systems. In treating such open systems quantum
mechanically, it is quite difficult to properly define the reservoir (thermal equilibrium)
regions, as well as the contact regions between the reservoirs and the active device region.
Because of the nonlocal nature of the quantum system, errors in defining the contact region
will propagate throughout the device, often leading to spurious results.

UIL Approaches to Quantum Distributions

Why don't we just solve the Schridinger equation for a given potential distribution, and then
weight various solutions with a Fermi-Dirac distribution? This approach actually works well
in equilibrium situations, or when we know in detail the properties of all contact regions and
the exact potential structure within the active area. However, finding the steady-state
solutions with the above approach often entails more work than using one of the techniques
for directly finding a quantum distribution self-consistently within the entire device domain.
A more important reason for not a simple Schr6dinger equation solver (plus Fermi-Dirac
weighting factors) for a distribution is that the actual distribution in the active region is a very
non-equilibrium distribution which we must find as part of the modeling problem. But, the
approaches discussed below are developed from the Schrtdinger equation; we are solving a
more general function, which incorporates the solution of this equation for an entire
functional set. In addition, since the Schr~dinger equation just defines a wave function,
which is one part of the density (or a representation for an electron), it is quite difficult to
incorporate dissipation through scattering mechanisms. Nevertheless, the starting point for
all of our approaches lies in a mixed state wave function P(x,t), which is taken to be a field
operator describing the degree of excitation of the various states of the system (this is one
method of conveniently describing the mixed state of the system). Depending upon the
Hamiltonian, this wave function can be a one-electron wave function or a many-body wave
function.

A. The Density Matrix

The density matrix is formed from the composite of two such wave functions described
above. It may be writtn as

p(x,x',t) = '(xt)'+(x',t), (2)

where the "+" symbol on the second wave function indicates the Hermitian adjoint function.
This is an equal time function and describes the correlation between events at positions x and
x'. Obviously, <p(xx,t)> = <'I(x,t)'V+(x,t)> = n(x,t) defines the local density of particles.
Here, we have taken an expectation of the density operator, since the definition in (2) is
obviously that of an operator. The equation of motion arises from the Liouville equation. It
may be written as (in the absence of dissipative processes)

il t sj in(s.V) V] p. (3)

where the last term, in the square brackets, is a short-hand notation for
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[sinh(Ia.V)VJ - l[V(R442) - V(R-IS)J (4)

and we have inroduced the coordinate tansformatons

R= - (x+x) , 3=x-1' (5)

The density matrix has been used directly to study a number of devices. In Fig. 2(a), we
show the density matrix for a double-barrier resonant tunneling diode (DBRTD) in
equilibrium. For comparison, we also show the Wiper distribution function (described
below) for this structure in Fig. 2(b). Both calculations are for barriers 0.3 eV high, 5 nm
wide, and separated by 5 rim. Both are within lightly doped regions adjacent to the barriers,
5 nm wide for the Wigner function and 7.5 nm wide for the density matrix. In both
calculations, the nominal density was 1018 cnr 3, and Fermi statistics were applied at the
boundaries. For the density matrix in Fig. 2(a), this is represented by a dampled oscillation in
the nonlocal coordinate, whose period decreases as the density increases. Density is obtained
from the diagonal component, which for the DBRTD, shows a small buildup of charge within
the quantum well. The peak of this charge is approximately 2 x 1016 cm-3.

S• o , M off entum (nm'1)

(a) (b)
Figure 2. The double-barrier resonant tunneling diode in equilibrium: (a) the density matrix
[10], (b) the Wigner distribution function [13].

For the density matrix under dynamic current flow conditions, dissipation is incorporated and
serves to couple the real and imaginary parts of the density matrix. Current boundary
conditions are represented by a displaced distrbution function, similar to a displaced Fermi
distribution. Dissipation is introduced as a phenomenological scattering potential whose
diagonal components have the properties of a dynamic quasi-Fermi level [11]. At low values
of bias, the scattering potential has the form (x - x')[J/cp(xx)]p(xx'), which is similar to that
discussed in [12]. Here J and r represent current and scattering time, respectively. This form
of scattering conserves the total number of particles. For simple barriers, the current-voltage
characteristics display the expected exponential dependence on potential energy, with
accumulation at the emitter side of the barrier and depletion on the collector side.

The computational procedures are described in detail in [12], and briefly may be described as 4
re-expressing (3) as a coupled first-order system of equations, and seeking solutions along
characteristic directions for the coupled equations. All of the calculations incorporate equally
spaced grids, and a coupled Poisson solver. For simple barriers, the current-voltage
characteristics display the expected exponential dependence on potential energy, with
accumulation at the emitter side of the barrier and depletion on the collector side. This is
shown in Fig. 3 for a 0.3 eVbarrier, 15 nm thick, which is embedded in a 30 nm lightly doped
region (GaAs). In Fig. 3(a), the real part of the density matrix, which is symmetric about the
diagonal and shows charge accumulation on the emitter side. The imaginary part is shown in
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Fig. 3(b), and is anti-symmetric, as its derivative along the nonlocal direction yields the
current. We illustrate the computed curnt-voltage relationship in Fig 3(c).

(a) (b))

I:

(c)
Figure 3. The DBRTD under bias, near the valley of the I-V curve. Pars (a and b) illustrate
the real and imaginary parts of the density matrix, respectively, while the I-V curve itself is
shown in (c).

B. The Wigner Distribution Function

The Wigner distribution becomes important when the physical problem is one that is better
understood in terms of a phase-space distribution, and the carrier distribution function in an
inhomogeneous device is one such problem. This phase-space distribution is not easily
represented by the density matrix itself, but the Wigner distribution attempts to present an
analogy between quantum and classical phase space for statistical mechanics. Since the
statistical picture in phase space is well understood, indeed uses the Boltmnann equation for
classical mechanics, transforming to a similar picture in quantum statistical mechanics allows
the physical picture of a problem to be better understood. Unfortunately, position and
momentum do not commute in quantum mechanics, and the two cannot be measured
simultaneously to any great accuracy in phase space. This appears in the Wigner picture by
regions of the phase space in which the distribution is negative in value. When the
distribution is integrated over all space, the probability density in momentum space is
recovered, and this quantity is positive definite. When the distribution is integrated over all
momentum, the probability density in real space is recovered, and this quantity is also
positive definite. In fact, if the Wiper distribution function is coarse-grain averaged over a
region of phase space corresponding to a six-dimensional volume element whose size is set
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by the uncertainty principle, the result is again a positive-definite "averaged" function. The
Wigner distribution function is defined from the density matrix through the Fourier
transform, often called a Weyl transform,

Fw(Rp=t) + X,x -i)> , (6)

which in a sense is a Fourier transform on the variable that measures the distance from the
diagonal in the density matrix p(x, x). Since the Wiper distribution is a c-number, an
expectation has been indicated in (6). This transformation accentuates the correlation that
exists in the wave functions separated in position (if the correlation exists). The Wiper
function builds in the correlations between different positions that are inherent in the off-
diagonal elements of the density matrix. The Wiper function is evaluated at position R. but
the density matrix terms that are used in the Fourier transform are those at the two positions
R ± (wf2). The wave function may actually vanish at R, but the Wigner function will have a
nonzero value in these areas in which the wave function vanishes, and the values in these
such regions are measures of the correlation between the two endpoints on the vector s. The
equation of motion for the Wiper distribution function is given by (again, in the absence of
dissipation)

_ pVFw Jd3pMRp)Fw(R,p + p,,t) , (7)

where

M(Rp') d3s ei/A [sinh(lsoV) V] . (8)

Equation (7) is quite similar to the streaming terms of the Boltzmann equation, especially if
the lowest order term in the expansion of the potential is used. The Wigner distribution has
also been used to model the DBRTD [13], and the results are shown in Fig. 4, again for the
use of a relaxation time approximation for the dissipation, and for a bias near the valley of the
I-V relation.

E

a 0.0/

Momenlum (ym-l) .0 0.1 0.2 oa3 0.4 0.8

Appld•e Bias (V)

(a) (b)
Figure 4. (a) Steady-state Wiper distribution at the valley of the I-V curve. (b) The I-V
curve for a DBRTD.

The Wiper function in this simulation shows a depletion region in the cathode area, which
arises from a contact potential drop and the tendency to form a bound state in this area. It is
largely eliminated if a lightly-doped region is introduced adjacent to the barrier layers (13].
Such contact potential drops are typical of most open systems, whether classical or quantum,
and are well-known in the Gunn effect device literature [14]. The depletion was also found

252

U U U U U



to go away with greater amounts of scattering in detailed studies of the role of scatering on
the DBR'D by Frensley [151. Generally, the cathode "barriers" will develop when there is a
mismatch between the injection characteristics of the cathode reservoir and the dissipative
nature of the active device region. Added dissipation or additional resistance in the active
layer (through the lightly-doped regions) reduces the mismatch, and thereby reduces the
depletion in the cathode-drop region.

C. Real-Time Green's Functions

Both the density matrix and the Wiper distribution function are equal-time functions, and
are functions of only seven variables---either two vector postions and the time or the vector
position, vector momentum, and the time, respectively. The energy does not enter into either
description. This resulted from the definition that was used in (2), but there was no real
requirement to have defined it in this manner. We could as easily have written the two wave
functions at different times, and it is possible to define another function, which is a function
of two times, through

G<(x,t,x',t") = - i<'+(x'V)V(xt)> (9)

The equal time version of (9) is obviously related to the density matrix itself. There are in
fact a group of real-time Green's functions, arising from the different ways in which the wave
functions can be combined and temporally ordered. Any simulation problem must solve for
the independent members of this group (four in number) [16]. The particular Green's
function in (9) is the "less than" function, and is closely related to the density in the other
distributions above. Introducing the change of variables (5), and the equivalent for the
average time T, and the difference time x, we can introduce the energy E (=Vo) through an
additional Fourier transform, as

G<(R,p,co,7) = if ei'P*-i0x <%(R +2 ,T + ,f'• - ,T - •)> d3 sd?. (10)

It is clear that the x =0 limit of (10) will lead to our Wiper distribution function, and

Fw(R,p,7) = f do) G<(R,p,co,7) (11)

Much more information is contained within the Green's function formalism, since we can
now investigate in detail the spectral density itself, which relates the energy to the
momentum. However, very little has done with these Green's functions in actual device
modeling. However, they have been used to study high-field transport in homogeneous
systems [16], and simplified versions have been used to study the DBRTD [17] for a non-
self-consistent potential and weak scattering from phonons (but introduced without resorting
to a relaxation time approximation). Nevertheless, the results are suggestive and indicate that
quite detailed quantum device modeling can be carried out with the real-time Green's
functions.

IV. Conclusions

Over the past few years, many groups have begun to explore quantum methodologies for
modeling real semiconductor devices (at real temperatures). Most of the various approaches
are closely related to each other, and offer different ways of approaching any given problem.
While none of the techniques has become well developed, all of the ones discussed here have
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been shown to lead to useful results and have given added insight into the problem. We are
now passing the point at which we are trying to understand the methodology, and we in a
position where we can now confidently use the methods to study device physics. Even so,
many problems of understanding, particularly in the quantum statistical mechanics
interpretations still remain, and will lead to many interesting lines of inquiry in the near
future.
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Abstract
The purpose of this work is to investigate the boundary conditions for the potential at
exposed semiconductor surfaces in split-gate structure. A two dimensional numerical ap-
proach is presented for the coupling between the non-linear Poisson equation in the semi-
conductor (Finite Element Method) and Laplace's equation in the dielectric (Boundary
Element Method). The utility of the coupling algorithm is demonstrated by simulat-
ing the potential distribution in a n - AlGaAs/GaAs quantum wire structure with a
semi-classical Thomas-Fermi charge model.

I. Introduction

Recent advances in nanostructure fabrication have made it possible to fabricate struc-
tures in which a two-dimensional layer of electrons is further confined into quantum wires
or dots. Typically, such device structures are defined by metallic split gates. In order to
understand the potential distribution in those structures, we solve Poisson's equation in
the two-dimensional problem domain,

fV0 = -p, (1)

where 0 is the electrostatic potential, e is the dielectric constant, and p is the charge
density [1]. Since this is a boundary value problem, one needs to know the values of the
potentials and/or fluxes at the boundary. This is a crucial problem, especially at the
exposed semiconductor surface.

In recent studies [1]-[7], the problem domain is typically identical with the semi-
conductor region, schematically shown in Fig. 1. The commonly used model for the
boundary conditions on the exposed semiconductor surface is either a Dirichlet boundary
condition [2],[3] or a Neumann boundary condition [4],[5]. Obviously, both of these models
have their limitations, especially for very narrow split-gate structures used for quantum
devices.

In this paper, we adopt an alternative viewpoint and develop an algorithm to im-
plement boundary conditions at exposed semiconductor surfaces. We view as the natural
problem domain the semiconductor and the dielectric, as shown in Fig. 2. Thus the arti-
ficial boundary conditions at the exposed surface are replaced by more physical matching
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condit'ips at the interface between the semiconductor and the dielectric. Specifically, this
algoritim, referred to as FBEM, couples a Finite Element solution of Poisson's equation
in the sgmiconductor to a Boundary Element solution [8] of Laplace's equation in the
dielectric with matching conditions.

"spMs sur rfacy
so ad J

W20al _I Gate

SI-Ga~s Substrasb SoSl1,0.m Substrue F !

Figure 1: Typical problem domain for quan- Figure 2: The problem domain consisting of
tum devices defined by metallic gates. Shown the semiconductor regions, f01 and 02, and
are the multi-layer semiconductor regions and the dielectric region, 0,1. the semiconductor
the exposed surface between the gates. exposed surface B-C is treated as the interface

between the semiconductor and the dielectric.

In Section II, we present the problem statement with the formulation of the boundary
conditions on the exposed surface. In Section 11, we discuss our numerical problem
formulation. In Section IV, we present example results of the FBEM calculation for a
n - AlGaAs/GaAs quantum wire structure under bias conditions, and we compare them
to those obtained with the usual Dirichlet and Neumann boundary conditions.

II. Problem Statement

We solve the two dimensional potential problem in the domain shown in Fig. 2,
where regions A, with boundary 8R, and 0 2 with boundary 00 2 are semiconductor
domains (non-linear Poisson equation) and region fAd with boundary aOd is the dielectric
domain (Laplace's equation). The simulation variable, u, is defined as the potential
difference between the conduction band edge E¢ and the Fermi energy EF in units of
the thermal energy kT, i.e., u - (EC(O) - EF)/kT = (E' - eO- EF)/kT, where EC6 is
the conduction band edge in the bulk. The boundary C-B is the exposed semiconductor
surface. Mathematically C-B is the interface between the region 112 and the region Ald.
Across this interface, the potential, u, is continuous and the jump in the normal electric
flux density is equal to the interface charge density. The problem to be solved can be
posed as follows:

Find: U = Uh, U2, ud, (2)

such that

f1V
2u1(X,y) = -f[udX,y)], (x,y) E it, 1 1,2, (3)

CdV 2Ud(Z, Y) = 0, (z,y) E fld, (4)
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and with interface matching conditions at the exposed surface. OflIc:

u2 - ud = 0, on o'c8, (5)
au, Oud e

"2_W -" -9= ̀-UQ,.t, o n f cB, (6)

where f(ul) = fi = ep(ua)/kT, is the charge density term in the domain 01, and Q,,
is the interface charge density on the interface 9T1CB. Generally Qi,t and p may be a
function of the potential u, that is, Qi,. = Q,,(u) and p = p(u).

III. Numerical Formulation

The semiconductor domain (1., fl. = f U 12, where the non-linear Poisson equa-
tion (3) governs, is discretized in a way suitable for the application of the Finite Element
Method (FEM). The resultant non-linear system of equations is:

K,,u +K1 2ujc = pf,

K12Uo + K22USc = PIc, (7)

where u1c and PBc contain the potentials and nodal forces, respectively, at the nodes on

the interface OfBC between the semiconductor and the dielectric, u. and pf contain the
potential and nodal forces at all other nodes in the semiconductor domain, respectively,
and K is the stiffness matrix.

The dielectric domain, f0d, is a homogeneous charge free region. The governing
equation is Laplace's equation. Since the fundamental solution of Laplace's equation (4)
is known, a boundary integral equation technique can be employed. The resultant system
of equations can be expressed as:

S,,uod + S12uBC=
S21uoD + S22Udc = Pdc (8)

where Sd is the equivalent stiffness matrix and pd is the equivalent nodal force vector.
Writing the matching conditions at the exposed surface, (5) and (6), in discretized

form,d UfSc = UBc = uBC, (9)

PBC + Pdc = q_ (10)

A new global system of equations is formed by coupling the dielectric, equations (8),
with the semiconductor, equations (7), and enforcing the matching conditions (9) and
(10). vspace-O.lin

(Si o o U PiO
S21 S22  0 [IBuc q

0 K12 K. 0 u , - (11,
K22 KT - \PBC 0

Solution of this set yields the potential distribution in the semiconductor domain,
including the interface 0lc, and the nodal flux on OMBC.
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IV. Example

The example structure with its dimensions is shown in Fig. 2. The quantum wire is
realized at the Aio.3Gao.7As/GaAs heterojunction and is defined by the metal gates on
the top surface. The gate electrodes have an applied voltage V.. Between the gates is
the exposed semiconductor surface where the interface charge density Qjnt is assumed to
be fixed for the example although this is not a limitation of the algorithm. The n-type
doping density is assumed to be 10O'cmn- 3 in the A1o.3Gao.7As layer and 10iScm- in the
GaAs substrate. A semi-classical Thomas-Fermi charge model [2, 7] is assumed in the
semiconductor domain.

1.2 0OS-- 4OSV

1.0 - - -,ov
. 0. 8 ... ........... ..............o 0.8 .-

0.6

0.4

0.2

0.0 ___ =

-0.2 ......... . .. . .......
-400 -200 0 200 400

Distance (nm)

Figure 3: Sample result of the potential land- Figure 4: Result of the FBEM algorithm
scape in the semiconductor region. Shown is showing the conduction band profiles paral-
the conduction band obtained by the FBEM lel to the heteroihaerface (on the GaAs side)
algorithm for -I.OV gate bias. The heteroint- for different bias conditions.
erface is clearly visible at the discontinuity of
the potential.

As shown in the center of Fig. 3, a potential well is formed underneath the ex-
posed surface for a negative gate bias of -1.0 V. In Fig. 4, the conduction band is
plotted parallel to the AIGaAs/GaAs heterointerface (on the GaAs side) for different
bias conditions. An electron gas is formed in those regions where the conduction band
dips below the semi-classical electron quasi Fermi level, which is chosen as the zero of
the energy axis and indicated by the dashed line. Figure 5 shows a comparison of the
results obtained with our FBEM algorithm and those utilizing the conventional Dirichle,
or Neumann boundary conditions. Shown is the conduction band profile parallel to the
AIGaAs/GaAs heterointerface (on the GaAs side) in Fig. 5(a), and the different meth-
ods produce significantly different results. Specifically, the expected width of the electron
channel differs by a factor of two for the Dirichlet and FBEM boundary conditions. The
Dirichlet boundary conditions also predict a significantly higher electron density than the
FBEM algorithm. Figure 5(b) shows the same comparison at the semiconductor surface.
Both the Dirichlet and Neumann boundary conditions exhibit an unrealistic discontinu-
ous behavior of the potential, as opposed to the physically more appealing smooth result
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of the FBEM algorithm.
In summery, we have presented a study of the boundary conditions at exposed semi-

conductor surfaces and developed an algorithm, termed FBEM, to solve this type of
potential problem in the semiconductor and the dielectric. The major advantage of our
algorithm is to model the exposed semiconductor surface by imposing the more physi-
cal interface matching conditions without making artificial assumption about either the
potential or the electric field at the exposed surface. In ongoing work, we study the
implementation of different physical models for the interface charge Q,• at the exposed
surface. These results will be presented in the future.

4.0 ................

1.2 (a) [3 i3.5 (b)NO
1.0 - INeuniarmi....N

-, 0.81.0 -3.0 -- Z ]FSEM
- 0.6 2.5
0.6 "C 2.0 -

. 0.4
9 0.2 1.5

0.0 - - -1.0 :-

"-0.2 1 ....... ' ... 0.5...................
-400 -200 0 200 400 -400 -200 0 200 400

Distance (nm) Distance (nm)

Figure 5: Comparison of the conduction band profiles under -1.5 V gate bias for the
three types of boundary conditions on the exposed semiconductor surface; (a) parallel
to the heterointerface (on the GaAs side), and (b) parallel to the semiconductor surface.
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Abstract
Traffic theoretic or queuing methods are proposed as a natural framework for modelling the
correlated tunnelling and transport of single electron solitons in coupled tunnel capacitor
structures below the Coulomb blockade threshold. Stationary state and time-dependendent
modelling is developed and validated against Monte Carlosimulation. Exact results are obtained
for the double tunnel junction or quantum dot. The effects of discrete energy states are
evaluated and the extension to multiple junctions illustrated.

I. Introduction

The controlled transport/correlated-tunnelling of single-electronic excitations in coupled
tunnelling capacitator structures is now experimentally established in metal-insulator, metal-
semiconductor systems and in capacitatively-coupled quantum point contacts in semiconductor
2DEG structures[I-4]. These structures rely on the existence of ultra-small capacitative
structures such that the effective charging energies e2/2C exceed the thermal energy kBT [5].
By exploiting state-of-the-art nanofabrication it is possible to construct 20nm scale coupled
capacitors (metal on semiconductor coupled Schottky dots)[6] which point the way to a future
high temperature, high density nanoelectronic systems technology (Fig. 1).

Figure 1.40 nm diameter hemispherical Aluminium Schottky dots on p-Silicon with 15 nm
spacing (Weaver[6]).

Single-electronic, ultra-small capacitor systems provide a new regime of study for
semiconductor device modelling wherein the effects of charging become important and the
Coulomb interaction provides subtle correlation effects.
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IL Monte Carlo method

Simulations of arrays of single-electronic tunnel junctions (see figure 2) and gated arrays
(figure 3) have been carried out to date by Monte Carlo methods which have proved to be
prohibitive computationally for the extended systems of technological interest.

R C C R

0C C4HHC 2 C N-1AC

VIVr VI -7 CO Vr

, -Tco Tco TJo VgvC

Figure 2. A multi-junction tunnelling array. Figure 3. Gated 2-junction array
The capacitances C are tunnel junctions. CO is taken to be non-tunnelling.

In the Monte Carlo approach[7,8] the state of the tunnel junction array is described by the
number of solitons (electron plus polarisation field) at each node. The total charge on each
junction/tunnel junction/ground capacitance is the sum of the charges due to the voltage sources
and the charges induced by the soliton structure.These charges are linearly related to the
voltages and number of solitons at each node. The evolution of the array is then determined by
the stochastic process of single electron tunnelling which alters the soliton occupancy vector n.

IIH. Queuing theory: stationary case

In the present paper we introduce a new approach to modelling single-electronic systems that
captures the Poisson stochastic nature of tunnel events and provides a fast, physically
transparent and efficient method of calculating the steady-state characteristics of multi-junction
configurations. This new method involves a re-formulation of the transport equations in terms
of of queuing theory (traffic theory[91) and centres on determining the distribution Pi of quasi-
electrostatic soliton excitations that are formed during the transport/tunnelling process. For an N
junction array the state of the system is described by Si = (kl, k2 , ... kN) where ki are the
number of excess electrons(solitons) at node ki(figure 4 shows states for a 2-junction system).

g±O I~tl p.J2

Figure 4. Soliton states in a 2-junction. Figure 5. Transitions of soliton states

An electron may tunnel from a node to a neighbouring node provided a tunnelling conection
exists (connection matrix Xij = 1). Electrons form a queue at each arrival node where they wait
for "service" (unlike conventional traffic theory the queues are always full and the "service rate"
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which is equal to IIi the total departure rate from each node i varies as a function of the state of
the system). The current passing between two neighbouring nodes (lk) which are connected by
a tunnel junction with capacitance Clk is calculated from the Pi by :Ik=e.Yi Pi(Fi(k,l) -

ri(l,k)) where Pi is the probability of finding the system in state Si, and Fi (k, 1) =
tunnelling rate from node k to neighbouring node 1 when the system is at state Si.The average
voltage across the capacitor Ck, can also be calculated as vk. = -iPi". qkl (i) /Ckl *
To determine the distribution of the soliton states Pi, consider a single tunnel event from node

k to node I at state Si to form state Sj. Define the departure rate Aij = rniD(c,) for Xkl =

l,from state Si to Sj for the system already occupying Si. The Poisson nature of the tunnelling

events allows us to find the total departure rate from state Si as:p.i= Y5 gi5 and the
transition probability from state Si to Sj is thus~rij = qiij / Igi def'rg the routing matrix R .The

the average residence time (per visit) at state Si is 1/jgi. The input traffic to node i is given by

)1= Xt rij. orin matrix form, the traffic erquations are: X. (I--R) = 0 where k is the

row vector (lX2, • n) • Unfortunately, the matrix (I-R) has a zero determinant and
therefore, the traffic equations, have an infinite number of solutions. To proceed let us
define the occupancy vector m=(ml,m2,....mn) where mi=1 if the system is found at state Si
and mi=O otherwise. It is clear that the elements of rn always satisfy li mi = 1 .The model
described is similar to a closed network of servers in which there is exactly one job travelling
(trapped) between the service centres. Let X* be some none zero solution of the traffic
equations. The probability distribution of m is given as [12]: p (im) =
a, (ml) . a 2 (m2 ) ... an.(mn)/G, where ai(0)= 1 & ai(1)=Xi*/gi.Gisa
normalisation constant evaluated as :G = Y, fli ci (mi), where the summation is realised
over all possible vectorsm. G reduces to G = £iji/ji. Finally, the distribution of
soliton structures is found as,

Pi = G- •i*/gLi which is the key result of this paper.

IV. Exactly solvable example: the double junction

Figure 6 shows an application to the 2-junction (or single quantum dot) compared with results
obtained by the Monte Carlo method(750 events).Above a threshold voltage Vth electrons can
tunnel into and away from the dot, one electron at a time. For N excess electrons the total
electrostatic energy due to this charge is (Ne)2/2CT where CG, is the total capacitance seen by
the charge, CT =CI+C 2+Co and C1,C2 are the capacitances between the dot and the metallic
electrodes and Co is the capacitance to the ground electrode. In this case, on leaving state Si the
system can only make a transition to states Si+1 or Si- I(see figure 4). This is a Markovian

birth-death process which can be solved exactly using the transition rates Xn (Sn_ I -> Sn) and

Jtn (Sn -> Sn-1) given in terms of the tunnelling rates by: Xn = Fn-I(l,c) + Fn- l(r,c); gin

=rn(c.1) + Fn(cr).The probability of finding the system at state Sn is found as:
n

Pn= Z-. f1 (X)i/gi) (n > k1) or - Z-1  (n = k1)
i-k 1 +1

k2 i
Z _I + Y, rJ ()n/9n)

Si-kI n-kl1+1
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and where k, and k2 are the minimum and maximum possible number of excess electrons that
can be accommodated on the dot. The states contributing to the process can be discovered
according to the condition: if )i > 0 and Li > 0 then both Si and Si-I are legal states.
The oscillations in the dc conductance with gate voltage at low bias voltage correspond to
transport through the same number of soliton states. In Fig6(a) transport in the different
segments corresponds to states (0,1),(1,2), (2,3) and so on. At higher bias more states are
generated leading to splitting of the segments. In Fig 6(b) the sequences are:
(0,1),(0,1,2),((1,2) and (1,2,3). The maximum of the conductance peaks increases with
applied bias whereas the minima decrease in amplitude. For high bias V>>Vth , the
conductance approaches the constant valueG -> Gt/2. The speed-up ov.r Monte Carlo
simulation (750 departures) is about 300 x in CPU time.

G conductance density <n> G <n>U!
U emUi4 t nU nIt to

(a) V = 0.2 e/C (b) V = 0.5 e/C

Figure 6. Conductances G/Go and soliton density <n> as a function of voltage Vg for 2 tunnel 4

junctions at bias voltages V=0.2, 0.5 e/C. Squares:Monte Carlo .lines: queuing theory.

V. Time evolution

Suppose the system is found in state S = Sk at t = 0 with initial densities Pi(O) = 8ik. At a later
time t the system will be in a mixture of all possible legal states with densities Pi(t) given by the

rate equation: DPi/gt = Z (Pj itji) - Pi gi . As an application, consider a single quantum dot

described by the 2 soliton state (S) = ( n, n+l), with birth and death coefficients X and g
respectively. If the system is known to be in state Sn at t=0, the rate equation may be solved to
give: Pn(t) = J(t+X exp(-(0+u)t ) /(X+j±); Pn+I(t) = X ( 1 - exp(-(X + g)t ) /(X + A)
which in the limit t -> @ recovers our earlier result Pn(-o) = g / '.+li); Pn+l(e°) = / I (X-.+).

VL General application to multiple junction systems and quantum dots

Very complex behaviour is possible with soliton propagation in multiple junctions. Figure 7
shows an example from the traffic theory where we have enhanced the magnitude of the
conductance oscillations in a 3-junction array by choosing one element to have a large RC
value. Here Vr = 0 and VI = -V. In region (a) a maximum of one excess electron can stay in the
system; the possible states are (0.0), (0.1), (1,0) and the system stays mainly in state (0,1). In
region (b) the dominany state is (1,1) and up to 2 electrons excess occur. In region (c) 11 states
contribute to the conduction with betwen 0 and 3 excess electrons. Region (d) has 12 states
with between -I and 3 excess charges. The conductance evidently peaks each time the system
can accommodate one more electron.
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Figure 7. I-V characteristics, conductance and number of soliton states for a 3-junction having
R3 = 50 R1, R1-R2 ; C1=C2=C3=C; C--C0.

The methodology has been extended to (a) quantum dot systems where the isolated charging
islands have discrete energy levels[13]; (b) macroscopic quantum tunneelling processes [10]
The theory is being applied to the simulation of ultra-small coupled Schottky dot structures[6]
for which the capacitance matrx requirs a full 3D Poisson solver.

References

[11 T A Fulton and G J Dolan, Phys Rev Letters, 89 109 (1987).
[2] L S Kuzmin, P Delsing, T Claeson, K K Likhaerev, Phys Rev Letters 60 309 (1989),

62 2539 (1989)
[3] L J Geerligs, V F Anderagg, P A M Holweg, J E Mooij, H Pothier, D Esteves, C

Urbina, M H Devoret, Phys Rev. Letters 64 2691 (1990).
[4] U Meirev, M A Kastner and S J Wind Phys RevB40 5871 (1989).
[51 D V Averin and K K Likhaerev, J. Low Temp Phys 62 345 (1986).
[6] J R Barker, J M R Weaver, S Babiker and S Roy, Theory, modelling and construction

of single-electronic systems, Proceedings Second International Symposium on New
Phenomena in Mesoscopic Structures, Hawaii, (1992).

[7] N S Bakhavalov, G S Kazacha, K K Likhaerev, S I Serdyukova, Soy. Phys. JETP
68 581 (1989).

[8] J R Barker, S Roy and S Babiker, Trajectory representationsfluctuations and stability
of granular electronic devices, Chapter 22, pp2 13-232, Science and Technology of
Mesoscopic Structures, edited by S. Namba, C. Hamaguchi, T. Ando. Springer-
Verlag: London, Tokyo, New York. (1992)

[9] L.Kleinrock,"Queuing Systems",New-York, London,(1974,1976).
[10] D.Averin & A.Odintsov, Phys. Lett.(A),140, 251 (1989).
[11] M Schwartz, "Computer communication Network Analysis", Prentice-Hall Inc (1977).
[12] J Jackson, "Networking of waiting lines", Operations Research, 518, (1959).
[13] C Beenakker, Phys. Rev B44, 1646 (1991).

264

S 4 S S 5 4



SIMULATION OF A Si/SiGe MODULATION-DOPED FET USING

QUANTUM HYDRODYNAMIC EQUATIONS*

J.-R. Zhou, T. Yamada, IL Miyata+, and D. K. Ferry

Center for Solid State Electronics Research
Arizona State University, Tempe, AZ 85287-6206, U.S.A.

Abstract
We present here the simulation of a Si/SiGe modulation-doped HEMT. The electron transport
properties were obtained from Monte Carlo simulation. We use a set of quantum hydrodynamic
equations for the device simulation. The calculated transconductance is about 300 mS/mm at
300 K. Velocity overshoot in the strained Si channel is observed. The inclusion of the quantum
correction increases the total current by as much as 15 per cent.

I. Introduction

Modulation doped Sil.xGe/Si/Si1 Gex offers a Si-version of the HEMT. With achievable high
mobility in the strained Si layer (2000 - 3000 cm2/V-s at 300 K [1-2], 11,000 cm2/Vos at 77 K
[1], and 175,000 cm2 NV-s at 1.5 K [3-4]), the prospects of a high performance PET are good.
Experimental devices have achieved transconductance as high as 330 mS/mm at 300 K and 600
mS/mm at 77 K in a 0.25 lim gate device [1]. In this paper, we present a numerical simulation of
the modulation-doped SiGe device.

In preparation for device simulation, we have obtained electron transport properties, such
as the velocity-field and energy-field characteristics for strained Si and Sil Gex material, by
Monte Carlo simulation [2]. The device modeled here has a gate length of 0. 18 pm and we use a
set of quantum hydrodynamic equations which utilize these Monte Carlo results. The calculated
transconductance is about 300 mS/am at 300 K. Velocity overshoot in the strained Si channel is
observed. The inclusion of the quantum correction increases the total current by as much as 15
per cent.

II. Modeling of Si/SiGe modulation-doped FET

A set of hydrodynamic equations, which is described below, is used in the simulation. The
equations, which are essentially the same as those used in [5-7], describe the particle
conservation, momentum conservation, and energy conservation. Written in the temperature
representation, we have:

an + V.(nv) = 0, (1)at

C -v -+ v.Vv ffi - -- (2)
at-- M* -m EM n qBt Em

aT +_vV(Tq) V-(vTq) + v- - - _) _ (3)
t 3 37 3% 'Em Tw Tw

Wo&k SUpixme by the Army Remsach Office.
+ On leave from Fujitsu Basic Processes Division, Kawasaki, Jqwan.
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where x is the average electron density, v is the average electron velocity, T is the effective
electron teperature, m* is the effective electron mass, E is the electric field, cm is the
roow0m relaxation im, :w is the energy relaxation time, To is the lattce temperature, and Tq
is given by 2

Tqu= '/"+ 3---q (4)

with

Uq - - -----h2 V21n(n) (5)

and 7 is the degeneracy factor [7]
r = tjtd~T) F3/2(gI~kfT)

?tdiWT F29(WdkR7) (6)

where Fj is the Fermi-Dirac integral, and tf is the Fermi energy measured from the conduction
band edge. The factor Yis introduced as a correction to the total average electron kinetic energy
(assuming a Fermi-Dirac distribution function):

W =,_*23
w= + BT + Uq. (7)

Our Monte Carlo simulation was carried out to obtain the transport properties of the SiGe
materials. The computed velocity-field and energy-field relations are plotted in Figs. I and 2 for
strained Si grown on relaxed Si0Ge 3 , with modulation-doped concentrations of 1.5 x 1018
cm-3 and 1.0 x 1014 cr-3 at 300 K. The velocity curves in Fig. 1 show that, due to the higher
mobility of the electrons in the strained Si, electrons have higher velocity than that in SiGe
material. The low-field mobility is found to be about 3000 cm2 V*s, and a slightly larger
saturation velocity is observed. The average electron energy (Fig. 2) for strained Si rises faster at
low field because of the light transverse mass and reduced intervalley scattering, but is less at
high field due to impact ionization.

10i5 0e (N=10"'cmn)
10' .. j

- SiL7GeC. (Nl= 1.5 101cm)

101 l06 105
Electric field (V/cm)

Figure 1. Velocity as a function of field for strained Si on relaxed SiGe, found from Monte
Carlo simulation.

The relaxation times m and w, which are functions of energy, are determined by fitting
the homogeneous hydrodynamic equations to the velocity-field and energy-field relations in Fig.
1 and Fig. 2.
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Fig. 2 Average energy as a function of field for strained Si on relaxed SiGe, found from Monte
Carlo simulation.

The numercal simulation has been applied to a 0.18 lim gate, quantum-well device with a
modulation-doped strucure of Sio 7Go3/Si/Sio.7 - 0 .3 -The device structure is shown in Fig. 3.
The doping of the top Si0 7 G e. layer is taken to be .5 x 1018 cmu3 , and a doping of 1.0 X i01
cm-3 is used in the substrate Sýi7-0. The lattice temperature in the simulation is taken to be
300 X. The typical simulation domain is 1.0 pim x 0.095 gm. The thickness of the top SiGe
layer is 19 rnm, and the strained Si channel is 18 rni. The graded interface transition at the
SiGe/Si junction results in an effective 3 nm spacer layer. For simplicity, we only use a three-
layer structure. The modulation-doped structure in [1] is more complicated. However, the
active structures are similar.

Gate
Source (-0.18 m) Drin

Staied Si

Fig. 3 The device structure.

HI. The simulation results

The computed I-V characteristcs for the 0.18 pm gate device are shown in Fig. 4, for gate biases
of 0.7, 0.5, 0.2, and 0 volts, respectively. The small thickness of the top SiGe layer provides a
normally-off device, since a Schonky barrier height of 0.9 V leads to an estimated depletion
width of 18.4 rim. The peak -- eis about 300 mS/rmm, and good saturation with a
drain conductance of 4.6 mS/mm at the gate voltage of 0.5 V is obtained. Approximately the
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same current level and ransonductance was found in a 0.25 pm device. The simulation results
are comparable to the experimented results in [1]. The relatively larger current level (0.3 mA.n m)
and ransconductance (330 mS/mm) found in the experiment is thought to be due to a higher
sheet density (2.5 x 1012 cm-2 [1) compared to I x 1012 cm-2 in this simulation) in the quantum
well for their particular modulation-&ped structure.

0.3
L =0.18 Lm

0.25 V =0.7£V

O.2

0.15 .5VI

0.05 0V

0
0 0.5 1 1.5 2 2.5 3 3.5

V . M)

Fig. 4 I-V characteristics of a 0.18 gm SiGe device.

3.5 10"1 1 1 1

3.0 Id' -. with q.c.

- 2.5 10"7
. 2.0 10I' \ without q.c.

1.5 10;'

5.0 10;6

0.0 10 i
0 20 40 60 80 100

Distance from gate to substrate (ran)

Fig. 5 Electron density across the channel.

Our simulation shows that, without including quantum corrections, the current would be
15 per cent smaller for the 0.18 pm gate device at a gate voltage of 0.5 V, as shown in Fig. 4. In
other words, the inclusion of the quantum potential increases the total current by as much as 15
per cent in the simulation. This large modification of the current was not expected in the device
with such a gate length. However, by inspecting the density distribution along the channel, one
can find that a rapid density change occurs at the gate end close to the drain contact within a
region much shorter than the gate length. In light of the quantum correction depending on the
density change, the modification of the current by the quantum effects is understandable, since
the electron density is high and the density change occurs in a short distance. As we expected,
similar density distribution across the conduction channel (to what we found in the GaAs/AlGaAs
HEMT) is found in this device [7]. The electron densities with and without quantum potential
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included are plotted in Fig. 5, which shows the increase of the electron density in the channel
when quantum potential is included.

Velocity overshoot, with peak velocity 2.6 x 107 cm/s, was observed in the strained Si
channel for both gate lengths used in this simulation, and is very important in achieving the
transconductance observed. In Fig. 6, we plot the longitudinal velocity along the conduction
channel in the quantum well. The bias condition in this case is V,= 0.5 V and Vd = 1.5 V. The
velocity overshoot in the gate region results in a peak velocity of 1.6 * 107 cm/s. The overshoot
is important in achieving the high transconductance for the device, for it introduces larger current
flow along the quantum well. The first velocity peak in the plot is due to the model structure we
used for the change of interface discontinuity [7], although it is not practical, it does suggest that
the structure can increase the electron velocity between source and gate, which in turn will raise
the average velocity through the device and enhance the device performance.

3.0101

2.5 10'

2.0 10'

1.510,

"1.0 107

5.010'
Gate

0
0.0 1• 2.0 10' 4.0 11? 6.0 H? 8.0 1 1.0 d0

Distance from source to drain (nm)

Fig. 6 Longitudinal velocity in the quantum well.
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Parallel algorithms for the simulation and visualisation of
interacting few-electron quantum transport in laterally patterned
low-dimensional semiconductors

James Cluckie and John R. Barker
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Abstract
A parallelised Chebyschev accelerated over-relaxation algorithm is developed for simulating the
few electron problem inhigh magnetic fields. A novel form of resonant tunnelling is proposed to
occur through a single potential barrier due to the confining potential provided to one electron
by a following electron in quasi-one dimensional current flow.

I. Introduction

Arrays of coupled ultra-small capacitor structures exhibit significant charging effects due to the
large charging energies deriving from the small values of the components of the capacitance
matrix. In particular, the occurrence of single-electronic effects such as the Coulomb blockade,
correlated single-electron tunnelling, and the demonstration of switchable single flows, has
raised hopes of a future single-electronics technology. The "orthodox model"[ 1] of correlated
single-electron tunnelling has been highly successful for the relatively large metal-insulator
systems; it assumes continuous energy distributions, large numbers of states in the 'metallic'
electrodes and simplified pictures of tunnelling and electron correlation. However, many tenets
of the orthodox theory are lost in the 2DEG semiconductor systems and in the recently
proposed coupled Schottky dot structures[2]. Rather than a single electron picture we must deal
with a few-body problem in which only distant dense 'electrodes' might be treated by self-
consistent mean field approaches.

Previously[3,4,5] we have developed a vectorised algorithm for the numerical modelling of 2D
quantum transport through quantum point contact structures, quantum waveguides and
Aharonov Bohm ring devices using the ADI algorthm on the discretised 2D Schr6dinger
equation. This method fails for high magnetic fields due to errors arising from non-
commutativity of the split kinetic energy operators. It is also unacceptable in accuracy for the
few body problem and regions of complex quantum chaos.

II. Algorithms

This work is part of a much more general problem which concerns the modelling of the
transport of n-interacting electrons within an arbitrary shaped quantum waveguide (hence
discrete energy states) including charging effects. Our algorithm has been structured such that
the interacting 2 electron problem can be studied for a ID spatial model. The 2 electron problem
in configuration space is isomorphic to the problem of 1 electron in 2D space in the presence of
an effective 2D potential given by the sum of the confinement potentials for each electron plus
the Coulomb potential. Consider first the 1 electron 2D time-dependent Schr6dinger equation

d
i7-- W(x,y,t) = HV(x,yt) (1)

dt
which has solutions of the form
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-= W (2)
or

W(x,y,t + At) = V(xy,()expt---3)

Using the Cayley Expansion for the exponential and defining r =iAt

2h
V(x9y),÷1= I-(4)

Where the t indices refer to discree time.

Now for a single electron two-dimensional system with time-independent potential profile the
time-independent Schr&Iinger Equation is given by

Hyr(x.y)={-.- + d2) + V(xY)}V.,(Y) (5)

Using Taylor Expansions this can be approximated to second order in A (the spatial grid
spacing) by

A2Hy,., 2m"('',+¢-. + ¢.+' + ,.--4v.,) + v~, y',(6
Where once again the x and y indices refer to the discrete space. Substituting this in Eqn (4)
above, re-ordering and defining various other terms then gives
C,.,.'.Y + + V.+1, + V.+,+, + + .,_, = ally (7)
where

-.. 4 s i-- 4 ,'. (8a)
4n& 

(8b)hAt
2n&2

A2 (80
9.Y-(4 + ,. + ip) V',' - V.'+I. - V1,1 - 1 -.,+, I.-, (8d)

The algorithm we use to solve this set of equations is Chebyshev Accelerated Simultaneous
Over Relaxation, a succesive approximation method. The residual is defined as
C".' -=' Wj". g. + w'.+I., + Vi,-,., + wj,.r+, + W'.,-,- •2'.Y (9)where the i index refers to each iteration. This is iterated repeatedly in a chessboard fashion (i.e.

odd/even) using
w' i+1

WA4 .= - Z.Y (10)

until the residual is sufficently small. The initial wave function for each set of iterations is taken
as that for the previous time step. co is defined by
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0 1

O1.(1-½• (11)

I*)+1 = 1

(1- *p~oJ)

where p1 is the spectral radius of the Jacobian method i.e.

Po = f(cos(Y,) + cos(Q)) (12)
and J and L are the number of grid points in each direction.

IV. Inclusion of a magnetic field

The basics of this algorithm remain the same when magnetic field is included and when it is
adapted for two 1D interacting electrons.Using the symmetric gauge Eqns (7) & (8) become

. Ve.+ 1 + (1- iOy) ye.+,, . + (I+ •y) Y + (I- i x) ,. '++ (1 + i +) v',.-, O÷ = f ,, (7a)
where

s, i - 4 - -4b.Y - (x 2 + y 2) (8a)
4 m ý -( 8 b )

'hAt
2mA2
h2= (8c)

ft2., m-(4 + W'., + ip] + O(x2 + y2))/f. -(1 - i~y) '.÷1.,Y
Y) e. (8d)

-(1 + ijy) ('1'-1., -(1- i&x) vf.,.+ - (1 + i&x) /.*-
1

0 = me•A 2  (8e)
me 2B 2AY

S= 2A(80
The residual is then defined by

W, + (1- jy) ÷., + (1 + j0y) v, 1 I., + (1 - jox) •.,9a'XYof' (9a)
+(1 " ,W--+Y1- ,.

and used as before to solve for each succesive approximation.

V. Two Electron case

If we consider x and y as the ID coordinates of two interacting electrons the time
independent Schr6dinger equation can be written identically to Eqn (5) above with

V(x,y) = e + V1(x) + V1 (y) (13)4zrok -A
where V, is the 1D electrostatic confinement potential.Therefore using this as the potential
enables us to use identical methods as above.

VI. Parallelisation

The 2 dimensional grid is split evenly over a rectangular array of transputers which iterate
their own section of grid and swap boundary conditions at each time step.
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Fi gut e 2(a) Contour plot of modulus of 2-electron
wavefunction in configuration space

Figure 2(b) Projected total charge distribution in direct
space for time sequence of Fig 2a.
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Figure (1) transputer linkage (4 x 4 case)
The method is parallelised on a 64 transputer array and runs at approximately 200 MFLOPS.
The results of this study are also being used to validate a novel algorithm for few electron
transport in 2 dimensions based upon an extension of the coupled-mode formalism [8]
developed for 1 electron 2D tranport. Applications to chaos in magnetic fields are in progress.

VII. Coulomb assisted resonant tunnelling in quasi-1D electron systems.

For the case of 2-interacting electrons transporting/tunneling through bottlenecks in small arrays
of quantum point contacts we have identified a new resonant tunnelling process which arises
from the tunnelling decay from the quasi-confinement of one electron between a second
following electron and a downstream potential barrier. The effect requires mono-mode
conduction. Hitherto, only the combination of conventional resonant tunnelling with Coulomb
blockade from the charging of the intermediate quantum well has been identified. Figure (2)
shows the case of two equal spin electrons initially 30 nm apart (Coulomb energy 4.5 meV)
encountering a barrier of height 50 meV , width 5 rum for incident kinetic energy of 10
meV/electron for electrons in GaAs. The effect is strongly damped unless the electron stream is
strongly correlated in space and time. Coupled quantum dots, long chain polymers, enzymes,
redox chains provide possible test cases.
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System simulation tools for single-electronic devices
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Abstract
Single-electronic systems are described by coupled sets of circuit equations which link the
charge, voltage and current distributions of tunnelling and non-tunnelling capacitor arrays.The
concept of critical charge is used to implement an efficient network solver. System simulation
may then be achieved by Monte Carlo methods althou;gh this is often prohibitive
computationally .Alternatively, linear programme techniques can establish the boundaries for
stable operation. The full 3D modelling of the capacitance matrix is required for recently
developed Schottky dot structures.

I. Introduction

The recent development of single-electronic devices has exploited the phenomenon of
correlated single electron tunnelling[ 1] in coupled tunnel junctions(ultra-small capacitor arrays)
under conditions set by the Coulomb blockade threshold e2/2C >> kT. At least three different
classes of structure are currently under study experimentally: vertical metal-insulator-metal[2-
4], lateral metal semiconductor metal[51 ; and laterally patterned two-dimensional electron gases
in semiconductor heterostructures[6]. These new devices pose new challlenges for
computational electronics[7]: they are strongly capacitively coupled, the major transport
mechanism is correlated tunnelling, the presence of thermal fluctuations, cross-talk, charge
trapping de-trapping and macroscopic quantum tunnelling are all potentially killer effects. Most
significantly existing single-electronic systems may be quite large (up to 100 devices) requiring
new systems tools for design and analysis.

II. Network solver

We have developed a set of simulation tools based on a similar formalism to Bakhvalov et
al[lO] for a linear array of tunnel junctions but extended to arbitrary single electron tunnel
junction circuit configurations using a matrix representation of the various voltages, currents
and circuit elements. The general theory derives from an analysis of a basic tunnelling event
and a single tunnel junction (capacitance C) in series with a non-tunnelling capactance Ce and a
voltage source VO. The tunnelling rate r is determined by the temperature T and the free energy
change following the tunnel event[l]: T(AET) = (AE/e2 Rt)[exp(AE/kBT)-l -1 where Rt is the
junction tunneiresistance. At low temperatures
r(AE)= (-AE/e 2Rt) (AE<O); r(AE) = 0 (AE<0). (1)
For the simple circuit we have: E = Qe2 /(2Ce) + Qc2/(2C) + QvVO; where Qv is the charge
through the voltage source and the citicalchar= Qc = e/(2[1+Ce/CI). For a single
electrontunnel event we find
AE = -eQJC + e2/(2(C+Ce)) (2)
This "instantaneous" model for tunnelling provides a first level for our system simulation tools.
A second level utilises the quantum Langevin equation[ ] approach handle fluctuations (due to
lack of space we do not describe that here). The critical charge is the charge at which tunnelling
becomes advantageous; the critical charges for a circuit depend solely on the junction
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capacitance and the lumped capacitance Ceff of the remaining circuit. We have developed a
network solver for Ceff by deploying an impedance matrix Z, positive definite with rank equal
to the number of loops in the circuit. The diagonal elements are the total impedances around
each mesh; the off-diagonal terms are the total impedances shared by two loops. By
partitioning this matrix we can separate out loops of no interest to obtain a lower rank effective
impedance matrix Zeff. Hence we may determine the critical charges.

III. Monte Carlo and Linear Programming simulators

The Monte Carlo simulator uses the general network solverto find the critical charges for each
device for which tunnelling becomes feasible in the tunnel junction network. The simulator then
iterates "events" by repeatedly characterising the circuit for a given set of input voltages and
clocked charge positions, discovering which tunnelling event will occur next and updating
dependent and independent circuit parameters using charge conservation and the circuit matrix
equations. Although this approach is important it is computationally expensive especially for
the larger extended systems of coupled devices.
To obtain a more rapid assessment of the possible stable operating regimes of single electronic
devices and systems we have developed a linear programming technique which allows us to
determine the allowed regime of stable operation in the control parameter space. The method is
essentially an inverse of the Monte Carlo approach: the allowed or disallowed tunnel events are
defined first followed by a detrmination of the circuit voltages and charge values. The approach
is illustrated in figures 2-4 for a turnstile device[41 shown schematically in figure 1. The Monte
Carlo results for the operational area of Vg-Va space (fig 4) are given by accumulating legal
points. The area so-defined is found to be well-modelled by boundary lines determined from
linear programming using the tunnel event schematics of figure 3.

These new simulation tools have been used to study effects of cross-talk and inter array
coupling in single-electronic systems. Figure 6 shows typical results of the effects of stray
capacitance couplin Cstray on the current through two parallel tunnel junction arrays shown in
figure 5.
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Figurel. 2-phase turnstile device Figure2.Linear progrmming schematics
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IV. Schottky dot systems

The traditional approach to single-electronic devices has utilised the hanging-resist technology
developed for metal-insulator-metal tunnel junctions[2]. Although this method has allowed
construction of large numbers of interconnected junctions in complex circuits it is limited by the
lithography to relatively large capacitances and consequently very low operating temperatures.
Very recently a much finer resolution lithography which has fewer processing stages and
involves forming ultra-fime ( < 5 nm radii and spacings) metal on semiconductor electrodes,
Schottky islands and dot arrays has been developed at Glasgow[5](Fig 7).These new structures
involve ultra-small capacitances with equivalent Coulomb blockade temperatures in excess of
60K scaleable to much greater than room temperature. The dot structures may be arranged
laterally to form pass transistors (fig8), RAM cells (fig9) or more complex circuits. An
essential feature of these systems is the requirement for the "tunnelling tails" of the Schottky
islands to overlap thus permitting correlated electron tunnelling from dot to dot via the
semiconductor. Modelling of these systems is crucial in order to determine the effective
capacitance matrix and for understanding how to control effects of unwanted traps (charge-
trapping de-trapping effects) which can destroy single electronic stability.by structuring the
substrate, ground planes, doping levels and island geometry.

The develpment of stable and reliable single electronic systems requires the precise design of
both the junction capacitances (inter-capacitances) and the capacitances to ground. Since the
measurement of such ultra-small capacitances is very difficult experimentally the design
becomes reliant on the numerical simulation of the capacitance matrices. The problem is
essentially a 3D problem involving complicated geometries, several dielectric regimes, and
device physics which involves surface conditions, random distributions of traps and their
dynamics.

To illustrate part of the design problem and the importance of an adequate numerical solution
we present here some results of 2D simulation of Aluminium wires on the surface of p-silicon
as an approximation to the Schottky dot devices shown in Figures 7-9. The simulations were
performed by the simulator H2F [8]. Figure 10 shows the potential distribution around two
40 nm width wires with 12 nm spacing. The fringing effects and presence of the silicon
substrate increased the junction capacitance 4 times in comparison with the simple parallel plate
formula. The ground capacitance is more than twice as high as the junction capacitance. The
presence of surface pinning states modifies the picture. The presence of donor type states near
the middle of the bandgap increaes the ground capacitance slightly, but a more profound effect
is produced by modelling acceptor states which significantly increae the capacitance(25%).The
juction and ground capacitances may be tuned by anisotropic etching leaving metal islands on
the top of silicon pedestals (figure 11 ). It is found that 200nm etching reduces the junction
capacitance by a factor of 3x and the capacitance to ground is diminished by a factor of 2x. A
parallelised 3D simulator is under development for for more realistic prediction and design of
such devices[9].
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Abstract

We demonstrate a useful decomposition of the potential energy, which accelerates the relaxation
method for finding the ground state of a SchrWinger operator in multiple space dimensions,
and improves the ultimate accuracy achievable. The potential decomposition makes the
Schr•dinger operator approximately separable for the evolving approximation to the ground
state; this decreases the error associated with the long time-steps in alternating-difference
implicit schemes.

L Review and Motivation

A central step in many quantum modeling problems is to find the lowest-eniergy eigenstates of a
Hamiltonian operator. A standard approach to find them is the relaxation technique [1].

The relaxation technique, applied to find the ground state of Hamiltonian H, amounts to
evolution of the Schrddinger equation in imaginary time:

Hpt) = -4 cM(t), (1)
Starting from an initial condition that has nonzero overlap with the ground state, the ground
state is asymptotically dominant after imaginary times long compared to 'to 1Fi /(Ei-Eo),

q(t) - ao(t) ico. (2)

(EO and El are the ground and first excited energies of the Hamiltonian, respectively; ao is a
space-independent coefficient.) The primary goals in such an evolution are stability and
accuracy. Implicit techniques exist which are well-known to yield stable evolution both in real
and imaginary time, in which accuracy can always be assured by using a sufficiently small time

step At. The simplest of these is

( I + AtH/If )@ = 9 i-1, (3)
with (0 n-ptj; = j

However, just as not all eigenstates are required, similarly not every kind of accuracy is
required either. In particular, since the object of the relaxation is simply to remove the high-
energy components as rapidly as possible, in order to examine what is left, an accurately
exponential decay of those components is less important than their mere rapid disappearance.

For this reason, it is common to accelerate the relaxation procedure by using long time steps.
When this acceleration is used with one-dimensional Hamiltonians, one converges to the
ground state.

The evolution described in (3), like other implicit evolution methods, requires inversion of a
large matrix (in this case, the matrix representing 1 + At M ). The matrix to be inverted has a
dimension equal to the number mesh points. This dimension grows as the inverse of the mesh
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spacing raised to the power of the mesh dimension. For multidimensional problems, this
inversion is o numerically intractable. Instead, standard time-evolution techniques
for multi-dimesio Hamiltonians typically use an operator-separation or alternating-direction
implicit (AD!) scheme. For example, decomposing a two-dimensional Hamiltonian H2D as

H2D - Hx + HY, 
(4)

one may write

1 1l(-l5)
1 +AtHx/I I +AtHY/1 ("

or equivalently:
(I + AtHY/If )j- -1,(a
(I + At Hx/It 9) .Jf q4j-4-5. (6b)

If Hx and Hy involve only the kinetic energy of motion along x and y directions respectively,
then each step (6a, 6b) requires the solution only of a tridiagonal matrix.

In ADI schemes, short time steps are necessary not only for the accurate exponential decay of
high-energy states, but also for the accurate estimation of the ground state. For example, in
(5), f# approaches the ground state of

H'a H2D + Hx Hy , (7)

which by perturbation theory implies a ground state energy that also is accurate only to first
order in At. As a result, while short time steps may be used initially to accelerate the dissipation
of high-energy components, eventually short time steps must be used to achieve accurate
ground states. In this kind of variable time-step relaxation, it can be difficult to determine
unambiguously how well one is converging. (See however, work by Doss and Miller on ADI
solution of Laplace and related equations [2], in which a way is found to optimize the time
step.) In general, efficient use of this approach can require a certain amount of user interaction,
and is correspondingly difficult to program for systematic application.

Separable Hamiltonians constitute an important exception to the above distinction between one-
dimensional and higher-dimensional. That is, if an ADI scheme consists of the alternating
application of the separated components of a separable Hamiltonian, then relaxation converges
to the appropriate ground state even for large time steps. (This can be seen immediately in (7),
from the fact that the ground state is simultaneously an eigenstate of H` and Hy as well as
H2D.] Most Hamiltonians (almost all, in the appropriate probability-measure sense) cannot be
put into separable form. However, as we describe below, it is possible to find a decomposition
that is separable in a restricted sense: the Hamiltonian is partitioned in such a way that at least
the ground state is simultaneously an eigenstate of each partitioned component. This permits an
acceleratim of relaxation without the usual penalty in accuracy.

IL Adaptive Potential

Most Hamiltonians (almost all, in the appropriate probability-measure sense) cannot be put into
separable form. However, as we describe below, it is possible to find a decomposition that is
separable in a restricted sense, thus permitting an acceleration of relaxation without the usual
penalty in accuracy.
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In order to simplify the taion, we here consider only two-dimensional Hamiltonians (4).
We seek new poentials V(xy) and VY(xy) so that, with

H-K'+V HY -KY + VO (8)

the ground state opo of H2D also satisfies the auxiliary equations

Hoio- KVE- -oE0O. (9)

If y4o is known, (9) can be solved for the potentials using (8). Because the total potential must
always be V, it suffices to determine only the single function

AV ( v ,-VY). (10)
During the time evolution, one knows only ip, the evolving best approximation to q0. To
indicate this we omit the zero subscripts on the separated potentials. Assuming that ip -
small, we "solve" (9) to find

V - (Kx - KY)q4 (I)
2qi

In the adaptive-potential ADI (APADI) approach, we recompute AV after each time step. Using
this AV directly to define the current potential is unstable, so instead we relax exponentially
toward the instantaneous potential, with AV for the ith time step defined by:

&Vi a (l.-a)AV'i- + cX AV[w(i'-], (12)

and depending on a relaxation parameter c.

IlL Numerical Results

We have applied the potential (12) in both first-order and second-order operator separation
schemes. We first treat a separable example (a sum of finite square-well potentials, in the x and
y directions) in order to compare the adaptive-potential ADI (APADI) scheme not only with
naive-potential ADI (NPADI: V" = Vy = V/2 ) but also with the a partition using the exact
separated potentials ADI (SPADI). Figure I compares these in a first-order scheme. We plot
the fractional deviation of the computed ground state energy from the exact ground-state
energy, using a constant time step (At = 2, in units chosen so that the electron mass, Angstrtm,
and electron-volt have unit magnitude), with a one-dimensional well depth of 0.2 eV, a well-
width of 40 A, and electron mass of 0.1 x free-electron mass. The relaxation parameter a is
0.05. APADI clearly represents a significant improvement over the standard approach,
represented by NPADL

After t -200, SPADI fluctuates due to round-off error. Using second-order operator separation
("true" ADI), the APADI scheme is significantly better, to the extent that APADI and SPADI
differ only in this round-off error regime.
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Figure 1. Fractional error in the ground state energy, found using first-order operator
separation for an exactly separable problem.

A nonseparable example, illustrated below, is based on the total potential illustrated in figure 2
(piecewise constant 0.0 eV in first and third quadrants, 0.2 eV in the remaining two, with hard
walls around a square of side 400A).

Figure 2. A nonseparable potential, with the x axis along the right-hand edge, and the y axis
along the left-band edge.
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After relaxing toward a solution, VX had the form shown in Fig. 3. Note that V' is different
for each energy level. The special case in which it is the same for every level is the usual case
of a sepiarble potential.

Figure 3. Vx for ground state of V in figure 2 (different scale, perspective; x-axis still to right)

The graph corresponding to Fig. 1, for the nonseparable potential, is Fig. 4. This calculation
was done using a second-order ADI.

-1.0

-3.0

-5.0 NPADI

7 -7.0

. -9.0 APADI

-11.0

-13.0

-15.0
0.0 100.0 200.0 300.0 400.0

time

Figure 4. Fractional error for nonseparable potential. 4
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Abstract

We present a numerical study of the chemical potential and of the capacitance in a model
quantum dot. Our model includes the electron-electron interaction and exchange and
correlation effects within the framework of density functional theory. Our results exhibit
the typical features observed in experiments, such as the increase in the capacitance for
increasing number of electrons and the presence of irregularities in the succession of the
chemical potential values vs. the electron number.

I. Introduction

Recent experimental results have shown extremely interesting single-electron phenom-
ena in semiconductor quantum dots. The conductance across a quantum dot loosely
coupled to the external electrodes via low-transparency tunnel barriers has been shown
to be periodic with respect to the voltage applied to suitably positioned gates [1-3].
This eject has been explained as the consequence of the chemical potential in the dot
lining up with the one in the external electrodes [2]. If the electrostatic energy prevails
over the quantum confinement energy, the behavior of the dot is substantially capac-
itive and we expect evenly spaced values of the chemical potential versus the number
of electrons. Several theoretical studies of quantum dots exist in the literature [4-5],
dealing with both very idealized models and with realistic, three-dimensional models.
Our aim has been to solve for the chemical potential in a structure which, even though
simplified, retains all the characteristic features observed in the experiments. We study
a 2-D model quantum dot defined by a given confining potential. Except for this sim-
plification, i.e. the confining potential not determined from the actual characteristics
of the semiconductor layers and the geometries and voltages of the metal gates, we try
to take into account all relevant contributions, including many-body effects, within the
framework of density functional theory.

I. Quantum dot model

Our model quantum dot is two-dimensional and defined by the shape of the confining
potential, represented by hard walls along the perimeter of a square region to which
we shall refer in the following as "quantum box". The potential within the box is not
constant, but quasi-parabolic, as the one produced by a positive background charge of
100q (q being the electron charge), uniformly distributed over the surface of the box.
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The potential effectively seen by the electrons in the calculations presented in this paper
is substantially the quasi-parabolic part, since this already provides enough confinement
as to make the electron density vanish before reaching the hard walls. This is a realistic
approximation of the actual potential in the experimental situations.
Our study is performed at the temperature of 0 K, thus for a system in the ground state
We solve for the eigenfunctions and the eigenenergies of the quantum dot by means of
an iterative, self-consistent procedure [8] based on the Kohn-Sham density functional
approach [9].
The Schr6dinger equation is discretized with a standard five-point formula and the
eigenvalues and eigenvectors of the matrix thus obtained are computed by means of a
Ritz iterative procedure.

III. Numerical results

The chemical potential is the main quantity we want to evaluate. Once the wave func-
tions and the energy eigenvalues have been determined, there are several ways to obtain
the chemical potential M(N) (N being the number of electrons). We can compute the
total energy E(N) of the system from [9]

N Ei _1_ff n(_ _n(-i- ....
E(N) 2 IF i-Ara

+ Jn(r) [Ee,(n(r-)) + Ecorr(fln(f) - Vex(n(r)) - Vcor(n(r-r))]dF, (1)

where Ej are the energy eigenvalues for each electron, n(r) is the total electron density,
Ee, Ecorr, Vex, Vcorr are the exchange and correlation energies and potentials, respec-
tively.
From the definition of chemical potential we have that p(N) = E(N) - E(N - 1). The
result of this differentiation, however, may be adversely affected by numerical errors in
the values of E(N) and E(N- 1). A plot of p versus N obtained with this procedure for
a 60 x 40 nm box is shown in Fig. 1 with solid dots. In the same figure we report, with
empty squares, the chemical potential computed for the same structure with a different
method: Slater's approximation. The "removal energy", i.e. the energy needed to
remove one electron from a system of interacting electrons can be approximated [10]
by e(N + 0.5), the energy eigenvalue for a fictitious additional particle with charge q/2.
It is apparent that for a small number of electrons both methods yield the same result
while, for more than 10 electrons, the technique based on the difference between the
total energies for N and N - 1 electrons starts being severely affected by numerical
noise. We have therefore used Slater's approximation in most of our calculations.
In Fig. 2 we report an idealized representation of the conductance peaks which would be
measured between two leads very loosely coupled through the a square quantum box of
various sizes. The height of the peaks is purely conventional and there is no broadening
because of the assumption of 0 K temperature and of vanishingly small transparency for
the tunnel barriers. The three plots correspond to three different box sizes: 40 x 40 nm,
80 x 80 nm and 200 x 200 nim.
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Fig. 1 Chemical potential vs. number Fig. 2 Conductance peaks for a square

of electrons quantum box

The quantity on the abscissae axis is the dot potential scaled multiplying it by the length
of the box side in nanometers. This scaling normalizes the three plots with respect to
the energy associated with the Coulomb interaction [1]. The first peak, coincident with
the zero reference for the dot potential, is for three electrons.

The spacing between conductance peaks is very uneven for the smallest box and a
more careful exam of the plot shows that there are groups of evenly spaced peaks
corresponding to the various degenerate energy levels in the square box. For example,
the peaks for the 3rd, 4th, 5th and 6th electrons correspond to to the 2nd and 3rd
single-electron orbitals, which are degenerate in a square box, in the absence of electron-
electron interaction.

n-4 n=10

n=15 n=30

Fig. 3 Electron density in a square quantum box.

As the size of the dot increases, we observe a reduction of the relative importance of
the quantization energy and the clear prevalence of the Coulomb energy, leading to an
almost even spacing for the 200 x 200 nm box. The plot for this largest box also shows
an effect which has been experimentally observed: the reduction of the average spacing
between peaks with increasing number of electrons. This effect is mainly due to the
increase of the area of significant electron density when more electrons are added to the

287

w w w V U S S



dot and see a less attractive potential, because of the screening performed by the ones
in the lower orbitals.
In Fig. 3 contour plots of the electron density are shown for a number of 4, 10, 15, 30
electrons confined in a 120 x 120 nm quantum box. There is a very significant change
in the extension of the non-zero electron density and in its shape when the nuliber of
electrons is increased. This accounts for the observed crowding of conductance peaks.
A differential capacitance Cd can be associated with a quantum dot, according to the
following definition:

Cd(N) qu(N + 1) - (2)

This quantity is more readily understandable if we consider a dot in the proximity of
some conducting surface such as, for example, a metal gate. This is also the most
common configuration in the devices which have been experimentally investigated. The
differential capacitance represents the ratio of the electron charge to the variation of the
voltage between the gate and the dot when an electron is added to the system. If the
gate is much larger than the dot, it can be approximated with an infinite conducting
surface and modelled with properly placed image charges.

100 " . ... ,

80 - no gate ,"
. ......... d =60nm

S60 -- d=15nm rum .. o

20. 
.........

Ud ff5 n m , . , - - -

0 20..........

0
0 20 40 60 80 100 120 140 160

Length of the box (nm)

Fig. 4 Capacitance vs. length for 4 electrons.

The results of our calculations of the capacitance [8] in the presence of metal gates are
shown in Fig. 4. The four curves are for 4 electrons in a rectangular quantum box with
a length/width ratio of 4/3 and a metal gate at a distance d of 5, 15, 60 nm or no gate
at all. We see that, while for no gate and for a distant gate the capacitance grows in a
substantially linear fashion as we would expect for a 2-D geometry isolated in 3-D space
(see e.g. [2]), for a very close gate the behavior becomes almost quadratic, reaching the
well-known classical limit of the parallel plate capacitor. For a small gate-dot separation
we perform simply a Hartree calculation, because the expressions used for the exchange
and correlation potentials [8] do not hold in the presence of strong interaction with the
image charges.

IV. Conclusion

We have studied a model two-dimensional quantum dot with a quasi-parabolic confining
potential, including many-body effects within a density functional approach. Results for
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the chemical potential in a square box have been presented, showing the transition from
a behavior dominated by quantum effects to one in which the Coulomb charging energy
is predominant. The differential capacitance which can be thus defined approximates
the one of a conducting 2-D surface with a shape like the one of the area of significant
electron density in the quantum dot.
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Abstract
We present numerical methods for a rather new model to calculate quantum steady states
of electrons in thermal equilibrium. The well known Bloch equation is generalized to ar-
bitrary distribution functions (Fermi-Dirac) and appropriately coupled to the Poisson
equation. A rational approximation of the distribution function yields an iterative algo-
rithm.

I Introduction

We present and discuss algorithms to calculate quantum steady states of thermally equi-
librated electrons in a semiconductor device. We consider a one-electron approximation
with a self-consistent potential describing the Coulomb interaction of the electrons with
each other and with the background of (positive) ions.

The most evident model is the Schr6dinger-Poisson approach which has been widely
used (see e.g [1], [2], [3], [4], [5]). However, the solution of the eigenvalue problem in an
iterative loop is numerically rather expensive, such that it might be interesting to look
for alternatives.

It is well known that under the assumption of Boltzmann statistics the steady state
density matrix can be obtained from the so called Bloch equation (see e.g [6], [7], [81).
The Bloch equation is a parabolic equation in which the role of the time is played by
the reciprocal of the temperature. The spatial operator is the negative Hamiltonian and
the initial datum is a delta-distribution. The charge density is obtained by evaluating
the density matrix at the normalized diagonal. The appropriate coupling to the Poisson
equation leads to a non-standard evolution problem ([8], [91).

We present the generalization of the linear Bloch equation to a self-consistent model for
arbitrary occupation probabilities. A rational approximation of the distribution function
yields an iteration in the temperature variable, the position variable can be discretized
e.g. by spectral methods. Due to the specific coupling to the Poisson equation Bloch-type
equations give the steady state density matrix only for one, fixed temperature.

II Modeling

In the usual approach the state of the system is described by one-particle wave functions
in some L2-space (e.g. [1], [2], [3], [4], [5]). One has to calculate the eigenfunctions of the
stationary Schr6dinger equation

(11.1) H4',(r) = Eji•t(r), U4')iIIL2 = 1, i E No

The Hamilton operator reads
h2

(11.2) H = -y-A + V(r)
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with some local potential V(r) taking into account the direct Coulomb interaction of the
electrons. Additional terms like an applied external potential, heterojunction discontinu-
ities, exchange-correlation terms etc. can be included without changing the algorithms.
The (electron) density is given by

(II.3) n(r) = E f(E - F, 0)-(r) V,(r)
iENo

where f(Ei - F,/3) is the probability of finding an electron in the state 1pi. Thermodynam-
ics enter via the reciprocal temperature 3 = 1/kT, where k is the Boltzmann constant
and T the temperature.

In order to achieve self-consistency we calculate V(r) as a function of n(r) by simply
solving the Poisson equation. Note that this direct coupling yields a /3-dependence of all
quantities.

For electrons we should use Fermi - Dirac (FD) statistics

1
(II.4) fFD(E, - F,/13) = e•(EF) + 1

which are approximated by Boltzmann statistics for high temperatures (small /3)

(11.5) fB(E, - F,/3) = eP(Ei-F) = Ze-#E.

The "Fermi energy F" and Z are (/3-dependent) normalization constants

(11.6) f n(x)dx = 1

As an alternative to the Schrodinger-Poisson equation the (charge) density n(x) for a
given temperature /3 can be expressed using what we call "Bloch-ansatz"

(11.7) n(x) = Tr f(H - F . id)

Here we mean "trace" in the following sense :

(11.8) n(x) = p(r = x, s = x, /3) p(x, x)

where p(r, s, /3*) is the (normalised) density matrix, i.e. the integral kernel of the density
operator f(H - F id,/3*). We have

(11.9) p(r, s, 0') = f(H - F . id, /3*)6(r - s)

or

(11.10) p(r, s, /') = Zf(Ej - F, /0")Ti(r)Oj(s)
j=1

which shows the equivalence of the Bloch-ansatz to the Schr6dinger approach.
For the Boltzmann distribution (11.7) yields the "classical" Bloch equation [6] as an

evolution equation (in/3) for the unnormalized density matrix.

(.11) p(r, s, = -Hp(r, s, 0); / E (0, 0*1
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where H, means acting on the r varibable only.

(II.12) p(r, s, 3 = 0) = S(r- s)

_ p(r, r, 1'
(11.13) n(r) f p(y, y3)dy , 0" fixed

We had to fix 3* since the coupling to the Poisson equation requires attention : A direct
coupling for temperature dependent n(x, 1) := p(x, x, 1) yields a 3-dependent Hamil-
tonian and the Bloch equation is not valid. Only p(r, s, 30) has a physical meaning for
the selfconsistent Bloch equation ([8], [9]).

For other than the Boltzmann distribution no such parabolic evolution eqvz)tions can
be derived. However, we can still derive iterations for the density matrix withol.. solving
the eigenvalue problem (II.1), (11.2).

III Numerical methods

For the Boltzmann statistics case the following relaxed iteration for the potential has been
proven to be convergent in [81 : For given Vk the Bloch equation (11.11), (11.12) is solved
for 1 E (0,13*], the density (11.13) is evaluated for fixed 3 13' and the Poisson equation
yields a potential f/k+l which gives the new potential

(111.14) Vk+l (X) = (1 - W)Vk (X) + W'k+i (x), w< 1

For Fermi-Dirac statistics it is possible to use an analogous iteration which avoids the
explicit calculation of the Fermi-level [10] :

(11I.15) Pk (r, s, 3)

4

(111.16) Pn[k] (x) = p(x, x, 3')

4.
(111.17) ŽAVk[pk] (x) = -n[pk](x)

Hk[pkl = -A + Vk [p]

4.

(111.18) = 3E (0, 3*1

(11I.19) p3(13 = 0) = 6(r - s) - pk(r, s, 3 = 0)

4$

( 0(r, s, 13)
(III.20) Pk+ (r, s, -) f A(y, Y, 13)dY
Like in the Boltzmann case the iteration has to be appropriately underrelaxed to as-
sure convergence. Underrelaxed iterations have been used for the Schr6dinger -Poisson
equation ([4], [5)).
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However, the numerical results of Nier [4] show that the optimal underrelaxation
parameter w depends heavily on the Debye length Ad of the considered device and that
w has to be extremely small for realistic values of AD. On the other hand, the iteration
(111.15) - (111.20) applies only for F-D statistics as given by (11.4), which looks different
for the 2-D case (see e.g. [1]).

The method we propose is based on a rational (Pad6)-approximation of an arbitrary
distribution function f(f(Ei - F)) :

N at_-+bt
(1II.21) f(z) n_ A(z) = II a

t=1 z + C1

To understand the idea we take the Boltzmann case f( - e- o and solve the Bloch
equation (11.11), (11.12) with an implicit Euler-scheme:

(111.22) (I+AI3H,)pj+i=pj, k=0,...,N-1, N.A3=3"

(111.23) po = 6(r - s)

Hence we see that the numerical iteration corresponds to the approximation

(111.24) f(z) = e-z (1 + -Iz) = f(z) ".
N ~ Zt

In general we have

N

(111.25) ](,3*(H - F))= l(H - F id + c tid)-(aeH - aF. id + bj)

where 3" is contained in the coeffizients at, bt, ce which have to be determined once from
the (Pad6) - approximation.

Hence we use the following iteration for the potential V and the Fermi-level F:

(111.26) Vk(x), Fk (Fk_.)

4.'
Hk = -A +Vk

(111.27) (aeHk - atFk . id + bt)(Hk - Fk . id + ce id)-1 ze+l= z, =0,..., N - 1

(111.28) zo = 6(r - s)

(111.29) pk[Vk, Fk](r, s, /3) := z-(r,,s)

4(111.30) flk[Vk, fk] (z) = pk(x, z,jr)

(111.31) Cd[Vk, Fk] := J nk[Vk, FkI(x)dx

4)
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(111.32) Vk+1 (x) solving -Ak/•+ 1 (x)- Ck[Vk, Fk]

(111.33) Fk+1 is given implicitly by the normalization (11.6)

A secant scheme using Ck and also Fk.-1, CA:-, gives :

(111.34) Fk+I = Fk - (Ck - k - Fk-l
Ck - Ck-,

Note that in general the iteration (III.26)-(III.33) does not correspond to any differ-

ential equation like the Bloch equation for Boltzmann statistics.
The above iteration has been tested for a 1-D model. The discretization in x has been

done both with finite differences on an equidistant grid and with a spectral collocation
method using trigonometric basic functions. Homogeno'is Dirichlet boundary conditions
have been used.

First results have shown a good convergence with a moderate number (below 10) of
iterates. Indeed, the Pad6-approximation with N = 6 is basically indistinguishable from
the exact FD-distribution. The implementation of a 2-D code using the spectral method
is ongoing.
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Transport Simulations for Quantum Well Heterostructures and
Lasers
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Abstract
A review of the simulation of electronic transport at and over quantum well heterostruc-
tures is given. A large number of experimental results relating to thermionic emission,
phonon-bottlenecks, electron-electron interaction, tunneling, as well as spontaneous and
stimulated emission will be reviewed in the presentation, while this short note will con-
centrate on effects pertinent to quantum well lasers.

I. Introduction

Transport over a quantum well and recombination of electrons (holes) in the well form,
in principle, a formidable problem. Obviously the transport in the immediate vicinity of
the well can only be treated by quantum methods, while in the remainder of the structure
(laser) the transport is well described in a semiclassical way using drift-diffusion theory and
extended versions of it.[1, 21 To bring classical and quantum transport regions together
requires sophisticated theories such as the Bardeen Transfer Hamiltonian approach[3]
or the Landauer-Bfittiker theory[4, 5] extended to include inelastic processes. Under
ordinary circumstances a rate equation approach and rates such as those used by Brum
and Bastard[6] may be sufficient. However, subtleties with the Pauli Priciple and the
ranges and normalizations of classical and quantum regions present problems.7J

In the presentation related to this paper, a number of cases of generation-recombination
and transport near quantum wells is going to be discussed. In this paper, however, we
discuss only a few facts relevant to the development of complete tools for semiconductor
laser simulation. It is in the modulation response of lasers that the subtleties of quantum
well transport most obviously manifest themselves. The model we propose is not to be
viewed as a final version but as a starting point for a complete numerical approach.

11. The Multiwcale Problem

As mentioned, transport in heterostructures such as a quantum well laser poses a difficult
problem. The quantum well must be treated appropriately because it is the region of pos-
itive gain, and, therefore, it is the most critical determinate of optical output. However,
the regions surrounding the quantum well also play important roles in the device char-
acteristics. For example, the current blocking regions significantly influence the effective
quantum efficiency of the device. Als, the transport in the separate confinement regions
can lead to low frequency roll-off in the modulation response[8J and gain saturation. [9, 10]
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LV

Figure 1: Triangular tesselation of a quantum well device is inappropriate due to a small
aspect ratio. A combination of rectangles and triangles produces a mesh consistent with
the quasi-one-dimensional nature of quantum wells.

As a result, the simulation of such structures is also a multiscale problem.

The first difficulty with such a multiscrle problem involves the tesselation of the device. It
is standard practice to use triangles to discretize a complicated device structure because
they conform well to nonrectangular features, such as contoured current blocking regions.
However, in the case of quantum well structures, triangles have a serious drawback. A
well formed triangle usually has an aspect ratio on the order of one. If a ridge waveguide
laser structure with a 10 im wide and 100 A thick quantum well is being simulated, then
the use of triangles leads to an explosion in the number of mesh points. Rectangles, on
the other hand, lend themselves very well to the quasi-one-dimensional nature of quan-
tum wells. As a result, the use of rectangles and triangles produces the most convenient
tesselation for a quantum well device. Figure 1 shows two meshes generated for a simple
quantum well structure. The more flexible aspect ratio of the rectangles produces a much
more appropriate mesh.

MI. Coupling the Classical and Quantum Regions

In addition to optimizing the number of mesh points, the use of rectangles in and near the
quantum well is crucial to the treatment of transport in these regions. Rectangles allow
the quantum well to be divided up into transverse cross-sections. The mesh points in each
cross-section can then be used to solve a one-dimensional Schr6dinger's Equation, giving
the eigenenergies and wavefunctions for the bound states in the well. Transport in and
around the well can then be treated in a special way. Figure 2 is a schematic represention
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Figure 2: The schematic diagram shows a transverse cross-section of the quantum well.

The classical and quantum mechanisms that determine the carer distributions are la-
belled where they apply. Note that the circles represents mesh points in the discretization,
not charge carriers.

of this treatment. The figure shows the conduction band edge and the ground state
wavefunction for one of the transverse cross-sections of the well. Drift-diffusion theory1,010

the sco Tes the driat teram to whe the quantum well. The bar d edge eres the

Therclaosica emissionnthmeoryism then determines theflxo carriers dintorioutiofs the wll-

following form.
• ,T=n-p,,N4 r{(EIF,)(TV-E ,2  + VE()
J, =-ppN,,Ao(iyp)(TVjp- VE.)

where,
V,. = (F,. - Ec)/T, j% = (Ev - Fp)/T

In each of the flux equations, the first term in parentheses is the disrbsion term and
requiring tht the quasd g eferm lt wel ae c tband edge determines the field.
Thermionic emission theory then determines the flux of carriers into or out of the well
according to the following expression.

M1 + M2 • kT kT

where, A; the Richardson constant.

Inside the quantum well, classical transport is not valid in the transverse direction; it
is the form of the wavefunctions that determines the distribution of carriers inside the
well. When carriers are injected into the well, they conform to the distribution estab-
lished by the wavefunctions almost instantaneously. Classical transport is eliminated by
requiring that the quasi-Fermi level inside the well are constant in the transverse direc-
tion. Their absolute positions ar determined by the carrier fluxes into or out of the well.

Consequently, it is the self-consistent agreement between drift-diffusion and thermionic
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emission transport that ultimately determines the filling of the well and, thus, the gain of
the laser. Inclusion of quantum reflections and resonances represents a straight forward
extension of this treatment.

Classical transport is, however, permitted in the lateral direction. And again, the rectan-
gular tesselation enables this to be treated correctly. The lateral transport is treated with
drift-diffusion theory. The divergence in the carrier flux is calculated for each point in a
transverse cross-section of the well, but these divergences are added together to determine
the continuity equation for the wavefunction as a whole. The result is the propagation
along the quantum well of entire wavefunctions that represent the carrier distribution,

and maintaining the shape of the wavefunctions as carriers propagate i6 necessary for the
correct simulation of quantum systems.

The importance of coupling the classical and quantum regions correctly is evident in fig-
ure 3. This figure shows the modulation responses for two different lasers. Each laser has
5000 A AlGaAs separate confinement regions on each side of a 100 A GaAs quantum
well. However, for the device in the top figure, the optical confining region was ungraded,
whereas for the bottom device, it was linearly graded. The ungraded device shows low
frequency roll-off and increased saturation of the resonant peaks when compared to the
graded device. The roll-off is due to slow carrier drift in the separate confinement region,
and the gain saturation is the result of diffusive diode current. Even though the active
regions are identical in the two devices, the optical output characteristics are very dif-
ferent due to transport in the surrounding bulk regions. Consequently, it is critical that
the classical regions are properly coupled to the quantum region in order to accurately
calculate the device performance.

IV. Accounting for Carrier Capture

Although the method described above is an effective way of coupling the classical regions
of a laser with the quantized active region, there is an element missing that may affect
the measured characteristics of the device. We discussed the way in which thermionic
emission theory is used to determine the filling of the well. Thermionic emission theory
assumes that the carriers on one side of a heterojunction are in thermal equilibrium with
themselves but not with carriers on the other side of the junction. This is valid, but it also
assumes that once a carrier passes to the other side of the junction it immediately relaxes
and is in thermal equilibrium with carriers on that side. It does not consider the finite
time it takes for the hot injected carrier to lose its excess energy. This time is typically
on the order of a picosecond or less. However, due to the self-consistent agreement of the
thermionic emission current injected into the well and the drift-diffusion current in the
surrounding regions, any finite hot carrier concentration in the well can lead to increased
carrier densities in the separate confinement regions.[7] This increase in carrier density
will produce a diffusive barrier to transport and increase gain saturation, thereby affecting
the laser characteristics.

The coupling of the classical and quantum regions described above can be extended to
account for the relaxation of hot quantum carriers into bound states. Figure 4 schemat-
ically represents this extension. As before, the conduction band edge and the ground
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Figure 3: The modulation responses for two different 100 A GaAs quantum well lasers.
Each device has 5W00 A AIGaAs ••aate confinement regions on each side of the quantum
well. However, the optical confinement region for the top device is ungraded while the
confinement region for the bottom device is linearly graded.
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Thermonic Non-clasi&

Figure 4: The scDhematic diagram shows a transverse ci -section of the quantum well.
The classical and quantum mehanisms that determine the carrier distributions are la-

belled along with the scattering between quasi-bound and bound quantum states.

state wavefunction for a transverse cross-section of the quantum well is shown. Like the
previous method, drift-diffusion theory is used to determine carrier transport up to the
well, and thermionic emission theory is used to determine injection into the well region.
However, now carriers are not injected into bound states but rather into higher energy,
quasi-bound states. This is achieved by simply using thermionic emission with zero bar-
rier height. The quasi-bound states are not assumed to be in thermal equilibrium with
the bound states in the quantum well. They have a separate quasi-Fermi level to deter-
mine their occupancy. The quasi-bound states exchange carriers with the bound states
through a scattering lifetime, e.g. as calculated in [6]. The result will be a finite hot
quantum carrier concentration, the consequence of which can only be determined by the
self-consistent solution of the transport equation throughout the rest of the device.

V. Conclusion

The characteristics of quantum well devices are most critically dependent on the proper-
ties of the well, which can be accurately treated only with quantum mechanical methods.
However, the device performance can also depend strongly on transport in the remainder
of the device, as we have shown with the modulation response of semiconductor lasers.
Transport in these other regions is most tractable when treated with classical theories,
but this leads to the problem of coupling the quantum treatment of the active region with
the classical treatment of the surrounding regions. To do this correctly requires complex
mesosc3pic theories which are not easily implemented in computer simulation. In this pa-
per, we have presented a model which serves as a starting point for the numerical solution
of this difficult problem.
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4 Quantum Simulation of Several-Particle Systems

P. Douglas Tougaw, Craig S. Lent, and Wolfgang Porod
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Abstract

We study the simulation of quantum cellular automata and how such a simulation is simplified
by the features of FORTRAN-90. We demonstrate the use of second-quantized operators to
write the cell Hamiltonian and explain the Hartree self-consistent method for simulating a
many-cell system. Finally, several examples of simulated QCA devices are shown.

I. Introduction

The particular quantum system we simulate consists of several of the quantum cells shown in

Fig. (la). We determine the ground state of the system by solving the time-independent

Schrldinger equation. Each cell consists of five coupled quantum dots which contain a total of
two electrons. The cells only interact with each other Coulombically; no tunneling is allowed
between cells. Since the state of each cell is affected by its nearest neighbors, we call such a

system a quantum cellular automaton (QCA).

Because of Coulombic repulsion between the two electrons in each cell, the charge density

exhibits strongly bistable behavior. The ground state of the cell is therefore in one of the two
states shown in Fig. (I b). Because of this bistable nature, we can use the state of each cell to

encode binary information. We define a cell polarization which measures to what extent the
cell is in one of the two stable states shown in Fig. (1 b):

(PI + P3) - (P2 + P4 )

PO+ Pi + P2+ P3 + P4

t

a) 0 b)

3-2 P= +1 P=4
Figure 1. Schematic of the basic five-site cell. (a) The geometry of the cell with t-O.3meV, '--I/10,
and a-20 tum. (b) Coulombic repulsion causes the electrons to occupy anipodal sites within the
cell. The two bistable sates have cell polarizations of P=+I and P=- I (See equation (1)).
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N. S•cond-Quantized MHaitonien

We define a second-quantized annihilation operator, a, ., which destroys an electron on site i
with spin a, and a creation operator, at , c, which creates a particle on site i with spin a. The
product of these two operators, n4 , = a4 aat i, a, is the number operator for that site and spin.

Using these operators we can compactly write the Hubbard-type tight-binding Hamiltonian of
a single isolated cell:

Hotl= ZEa ,+ *. t~,,(a. t aj.. + a, la*,.

XEQM 4 ni + > VQ

Z I Ri- Rji 2ii>J. 0.0 1 (2)

This Hamiltonian includes on-site energies, tunneling between sites, on-site charging costs, and

Coulombic repulsion between each pair of sites. The interaction with neighboring cells alters
the on-site energies in the first term.

III. Unique Features of Fortran-90

Fortran-90 supports a level of data abstraction sufficient to allow direct implementation of

these second-quantized operators and the related state vectors. We have created user-defined

types representing creation and annihilation operators and many-electron site kets and bras. We
also provide functions to convert between these types and to define the effect of each operator

on all other data types.

The second useful feature of Fortran-90 for our purpose is operator overloading. This allows us
to use an operator without regard to the data types it acts upon. We then provide an interface
that invokes the appropriate function based on the data types involved. In this case, the action
of a creation or annihilation operator on a Dirac ket in the site representation is specified. The

operation is "overloaded" onto the normal multiplication symbol. A similar overloading

specifies that multiplication of a Dirac bra and ket be interpreted as the inner product of the
state vector.

Fig. (2) shows a segment of Fortran-90 code that demonstrates how easily quantum mechanical

expressions can be written as Fortran code once these definitions are in place. The code is
easily understandable because the level of data abstraction matches the level of quantum
mechanical abstraction.
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. t(ai,4ja,, C, + at j,,ai, o) 62)

-- Hopping terms --

do ist-1,NSTATES

do jSt-1,NSTATES

do ispl-1, 2

H(ili2)-H(ili2)+ket2bra(baseket(il))*(TO(ist)* &

&ad(1st,ispl) *a (jst, ispl) *3aseket (i2))
H (il, i2) -H (il,i2) +ket2bra (baseket (il)) *(TO (ist) * &

&ad (jst, ispl) *a (ist, ispl) *baseket (i2))

end do

end do

end do

Figure 2. Conversion from second-quantized quantum mechanical expression to FORTRAN-90
code using data abstraction techniques.

IV. Hartroe Self-Consistent Calculations

Since electrons are not allowed to tunnel between cells, we can solve for the ground state of

each cell separately. Such intracellular calculation includes exchange and correlation effects

exactly. The interaction between cells is included using a Hartree self-consistent technique.
Once the iterative solution of the system has converged, the system is in an eigenstate. Use of

several different initial conditions and comparison of the eigen-energies allows us to determine

the overall ground state of the system.

V. Application: Quantum Cellular Automata

We have used this scheme to simulate many arrangements of quantum cells. The most

fundamental of these calculations is shown in Fig. (3a). The system consists of two cells as

shown in the inset. The charge density of cell 2 is fixed, and the induced polarization in cell 1

is then calculated. This is repeated for many values of P2 in the range [-1,+1] and the induced

polarization P1 can then be calculated as a function of P2- This cell-cell response function

demonstrates the highly nonlinear and bistable nature of the cell's response to its neighbors.

Fig. (3b) shows a similar cell-cell response function calculated at several non-zero

twemetre. This requires calculating the thermal expectation value of the polarization over
the canonical ensemble. As seen in the figure, the nonlinearity of the response degrades as the
temperatue increases.
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Figure 3. Cell-cell response functions. (a) The cell-cell response function for the basic five-site cell
at zer temperature. The solid line corresponds to the antisymmetric case, and the doued line to the
symmetric case. (b) The temperature dependence of the cell-cell response function.

Fig. (4) shows three of the basic QCA devices. Fig. (4a) demonstrates that even a weakly
polarized cell can drive a line of similar cells and that the bistable saturation of the cell-cell
response will return the signal to maximum polarization in subsequent cells. Fig. (4b)
demonstrates that a signal will propagate through a right-angle turn without degradation, and
Fig. (4c) shows that a single line of cells can fan out to multiple lines and maintain signal

integrity.

a.) IW L-'

b.) Fe'C.)

Figure 4. Three basic QCA devices. (a) A line of cells can be used to transmit information
from one point to anodter. (b) The signal is transmitted correctly around a corner. (c) A single
lin can fan out corectly to multiple lines with the same signal. These are not schematic
diagrams; they are plots of the actual results of the self-consistent calculation of the ground
swe of each system. The diameter of each dot is proportional to the charge density on the site.
Th ceils with heavy borders are fixed; all others are free to react to the fixed charge.

Fig. (5) shows that the state of a free cell matches the majority of its fixed neighbors. This
majority voting logic can provide the basis of a new computing architecture. If one of the fixed

neighbors is called the "program line", such an arrangement of cells can be interpreted to be a
programmable AND/OR gate. The program line determines the nature of the gate (AND vs.

OR), and the other inputs are applied to the gate thus defined.
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Pr•ram ut A 0 1 0

Line Le JOL
Input B1

1 0 0
Figure 5. The programmable AND/OR gate. Here, the program line is set to one. so the other two
inputs am being Wplied to an OR gate. In each of the four cases, the ouput is one if eiter of the
two inputs are one. This is a plot of the result of a self-consistent ground state calculation.

Finally, Fig. (6) shows how to cross two lines of cells without having the signals interfere.

Wire crossings are very important for implementation of devices like adders and exclusive-OR

gates. Such a quasi-two-dimensional crossing is impossible with conventional devices.

r 0

-,i

Figure 6. One way to cross two QCA wires without signal interference. The box shows the extent
of the crossing, so a system designer can simply place such an arrangement of cells wherever two
wires need tO be crossed. This is the result of a self-consistent ground stat calculation for this
system.
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Full Scale Self Consistent Simulation of Quantum Devices
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Urbana, IL 61801

Abstract

A comprehensive self-consistent Schr6dinger-Poisson simulation is presented. The model
takes into account the various regions of reduced dimensionality throughout a particular
structure which can consist of OD, 1D, 2D electron gases or bulk. The feasibility of this
level of simulation is made possible by an iterative extraction orthogonalization method
for solving the Schr~dinger equation. This method is superior to conventional eigenvalue
solvers since it generates an arbitrary number of eigenstates and easily couples to the
Poisson equation. High order effects such as exchange/correlation and single-electron
charging are also included in the model. Transport is treated in the linear response
regime and used to investigate the Coulomb blockade oscillations observed by Meirav[1].

I. Introduction

Recent advances in semiconductor fabrication techniques have resulted in a large variety of
new experimental devices exhibiting quantum effects due to high degrees of confinement.
In order to provide a realistic model for the physical analysis and design of these struc-
tures, we have developed a comprehensive self-consistent simulation tool that merges the
statistical and quantum mechanical aspects of the problem. In this paper, we give the the-
oretical background of the model and its application to the analysis of the single-electron
charging effects on transport through a quantum dot[l]. Previous efforts at simulating
quantum structures have focused on localized regions in the device which exhibit reduced
degrees of dimensionality. Although these simulations have yielded much information on
the general quantum-mechanical properties in a device active region[2, 3, 4], their failure
to integrate the dots (OD),leads (MD), contacts (2D), and bulk regions in a particular geom-
etry prevents them from achieving good quantitative agreement with experimental data.
This lack of coherence has been due in large part to computational time constraints in
solving the Schrrdinger equation over an arbitrarily large number of grid-points, NG. Con-
ventional eigenvalue solvers typically scale as NV and generate NG eigenvectors thereby
restricting their application to problems with small grids. In a general quantum device,
however, eigenvalue problems need to be solved in all regions exhibiting reduced dimen-
sionality and require a large No. In addition, only a few eigenenergies are often necessary
owing to the small number of occupied eigenstates in a typical device. Clearly, a robust
eigenvalue solver that addresses the above issues and allows easy self-consistent coupling
to the Poisson equation is needed to bridge the gap between "localized" modeling and full
scale device simulations.
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ii. Theoretical Background

We solve the Schr6dinger equation with the iterative extraction orthogonalization method
(IEOM) that propagates a set of eigenstates according to[5]

=0* = C-"ft1'-') , ith iteration (1)

where H is the Hamiltonian and n indicates a particular eigenstate. The parameter a is
selected so as to minimize the error in the Taylor expansion of the exponential operator
ezp(-aH). In general, Ni iterations are required to maintain the accuracy of the Taylor
expansion and eliminate all the error projections of the basis states Im) of A onto the
initial guess state 0,J). Gram-Schmidt orthonormalization is performed over the entire set
of states after each iteration to prevent any excited states from collapsing to the ground
state. This procedure also eliminates all projections of states with m < n such that after
N, iterations,

i In) + (En,,- ) (2)

The repeated exponential scalings of the error projections and Gram-Schmidt orthonor-
malizations therefore eventually convert 1I,.) into a pure basis state In). The convergence
criterion for the algorithm is determined by the expression

czNi = max [E lo ~ ( (M )1 (3)aNEm -- m E - En \e(n I 00))J

where e is an imposed error tolerance. Clearly, a should be chosen to be as large as possible
to reduce the number of iterations and still allow a high degree of accuracy in the Taylor
expansion of ezp(-af,). Eq. 3 poiuu- out an overall limitation of this method in that
the number of iterations required to achieve convergence scales inversely with the energy
separation between eigenstates. This problem can be alleviated somewhat by selecting
initial states with the appropriate symmetry such that the error projections vanish for
eigenstates with opposite parity. Following previous time dependent treatments[6, 7, 8, 9],
the exponential operator in Eq. 1 is typically cast into a split form which separates its
potential and kinetic energy components. The execution time of each iteration depends
on how efficiently the discretized kinetic energy portion can be solved. For the rectilinear
geometries often encountered in quantum devices, the kinetic energy operator can be fur-
ther separated into (z, y, z) components which can be treated independently and solved
by rapid elliptical solvers. In general, each application of the propagator scales with NG
and the Gram-Schmidt algorithm scales with NGN2 where NE is the number of eigenen-
ergies required in a particular simulation. If NE is relatively small, as is often the case in
nanoetructures, NoNj < N-• and the IEOM shows a significant improvement over con-
ventional eigenvalue solvers. The chief advantage offered by the rapid convergence of this
method is the ability to accurately treat the dimensionality of each region in a quantum
device out to an appropriate set of boundaries. We solve the 3D Schr6dinger equation
in the quantum dot (OD) regions, the 2D Schr6dinger equation in the lead (ID) regions,
and ID solutions are obtained in the contact (2D) regions. Semiclassical solutions are
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Figure 1: (a) Experimental device geometry used for investigating single electron charging effects.
A negative bias on the gate confines charge in the lateral direction to form ID leads and a
quantum dot between the restrictions. Modulation of the bottom gate bias adds electrons to
the quantum dot one at a time.(b) Theoretical electron density for a slice taken at the device
active region. The formation of a quantum dot is visible as an island of charge between the two
1D leads.

used for carriers that do not exhibit confinement (holes) and regions that are not gov-
erned by quantum mechanics. Charge densities are constructed by scaling the amplitude
squared of each wavefunction with its appropriate statistical weight[101. The distribution
functions used in the scaling of the OD localized states are derived from the grand canon-
ical ensemble with the constraint that only an integer number N* of electrons occupy the
quantum dot. N* is determined for a given gate bias by free energy minimization[11]. The
potential O(F) in each region is inherently coupled by the Poisson equation which main-
tains continuity of O(F) and its first derivative. The Schr~dinger and Poisson equations
are solved self-consistently by a modified Newton method that incorporates a line-search
step to allow convergence at low temperatures. In addition, exchange and correlation ef-
fects are self-consistently treated with the Kohn-Sham approach[121 using Perdew-Zunger
parameterization for the correlation potential[13]. Presently, the simulation is carried
out in equilibrium although in principle, nonequilibrium solutions are possible for accu-
rate evaluations of the quantum-mechanical current. We therefore compute the quantum
transport properties of devices in the linear response regime which is typically the case
for Coulomb blockade measurements.

III. Results

We have applied the simulation to the analysis of single electron charging effects in the in-
verted semiconductor-insulator-semiconductor structure reported by Meirav et al[l]. Fig.
1 shows the specific device geometry used in our investigation along with a charge density
surface taken at the device active region. A negative bias on the top gate confines charge
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Figure 2: (a) The quasi-ID eigenenergies and their respective localized OD eigenenergies. The
eigenenergies associated with the first (solid) and second (dotted) quasi-ID states are the only
ones occupied (EF = 0meV). The formation of sharp barriers leads to tunneling into and out
of the quantum dot. (b) The transport characteristics of the device exhibit sharp thermally
broadened (T = 5OmK, L. = .8pm) peaks that correspond to the addition of a single electron
to the dot and the subsequent lifting of the Coulomb blockade.

in the lateral direction to form 1D leads and a quantum dot between the restrictions.
The quantum dot is visible in Fig. lb as an island of charge between the two 1D leads.
In addition, the presence of charge in the leads and contacts is also apparent. As the
bias on the backgate is increased, electrons are added to the dot in single increments.
This results from the electrostatic Coulomb repulsion between localized electrons which
modifies the occupation probability of each level and allows only an integer number of
electrons to occupy the dot. The OD region is delineated by sharp barriers separated
by a distance L4 which bring the dot into weak contact with the leads via tunneling.
Fig. 2a shows the localized eigenenergies iu the dot superimposed over their respective
quasi-ID adiabatic eigenenergies obtained by extending the simulation of the leads into
the quantum dot region. Although two quasi-iD modes have access to the dot, the upper
channel is essentially closed owing to its relatively wide tunnel barriers and low statistical
weight. The device should therefore exhibit single mode characteristics. Transport in the
device is calculated using the appropriate expression derived for the Coulomb blockade
regime[14, 151. Tamson probabilities are evaluated using a transfer matrix calcula-
tion based on the quasi-ID eigenenergy as a function of distance. The charge imbalance
caused by single electron occupation is modeled by minimizing the free energy with respect
to the number of electrons. The difference between successive free energies then gives the
charging energy required to add a single electron to the dot for that gate bias[14]. Trans-
port characteristics of the device (Fig. 2) exhibit sharp thermally broadened peaks that
correspond to the addition of a single electron to the dot and the subsequent lifting of
the Coulomb blockade. The peak amplitude and periodicity show good agreement with
the experimental data[l].
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IV. Conclusion

In summary, we have demonstrated the viability of a comprehensive device-scale simula-
tion tool for analyzing quantum devices. The lengthy eigenvalue calculation, which is the
chief obstacle to this level of simulation via conventional methods, has been overcome by
employing the rapidly converging iterative extraction orthogonalization method that can
treat an arbitrary number of eigenenergies and wavefunctions. Finally, transport charac-
teristics for a device exhibiting single-electron charging effects were obtained and shown
to exhibit good agreement with experimental findings.
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Planar Supercell Simulations of 3D Quantum Transport

in Semiconductor Nanostructures

D. Z.-Y. Ting, S. K. Kirby, and T. C. McGill

Thomas J. Watson, Sr., Laboratory of Applied Physics
California Institute of Technology
Pasadena, California 91125, U.S.A.

Abstract
We introduce the planar supercell method as a means for treating 3D quantum transport
in mesoscopic tunnel structures. The flexibility of the method allows us to examine a
variety of physical phenomena relevant to quantum transport, including alloy disorder,
interface roughness, defect impurities, and 0D, ID, and 2D quantum confinement, in
device geometries ranging from double barrier heterostructures to quantum wire electron
waveguides. As examples, we examined quantum transport in double barrier structures
with interface roughness, and in quantum wire electron waveguides.

I. Introduction

In modeling quantum transport in semiconductor resonant tunneling heterostructures,
one can often assume perfect periodicity in the lateral directions, thereby reducing the
mathematical description to a 1D problem in which only the potential variation along the
growth direction need be considered. However, in realistic device structures we need to
take into account imperfections such as interface roughness, impurities, and alloy disorder
which are incompatible with the assumption of translational invariance in the parallel

directions. In this work, we introduce the planar supercell method as a general purpose
model for treating these structural imperfections. The model is designed for flexibility
so that it can be used not only to study tunnel structures such as the double barrier
heterostructure, but also lower dimensional mesoscopic devices such as quantum wire
electron waveguides. Using this method, we have studied how the transport properties
of double barrier heterostructures are influenced by interface roughness. We also briefly
report on a study of transport in quantum wire electron waveguides.

II. Method

We use a planar supercell tight-binding Hamiltonian and specify a structure as a stack of
N, layers perpendicular to the z-direction, with each layer containing a periodic array of
rectangular planar supercells of N. x N, sites. Within each planar supercell, the potential
assumes lateral variations as dictated by the device geometry. Figure 1 illustrates a
set of planar supercell stacks used in simulating double barrier structures with interface

roughness. Our model is formally equivalent to the one-band effective mass equation[1]

h2 V0 + V(x)o-- E0, (1)

discretized over a Cartesian grid, and subject to periodic boundary conditions (with su-
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percell periodicity) in the z- and V-directions, and open boundary conditions in the z-
direction. The transmission coefficients for structures described by the planar supercell
stack can be determined by the direct application of the multiband method developed by
Ting et aL [2]

Side View Interface Layer

Cross Section

Island
Size

Inc.

2.8 dx

4.9dX

10.6 dx

Fig. 1. A set of planar supercell stacks used in simulating double barrier structures with
interface roughness. Light and dark areas represent sites occupied by well and barrier
materials, respectively. Cross sections shown are the 25 x 16 planar supercells representing
the rough interfacial layers between the quantum well and the second barrier. Note that
the supercells are repeated in the lateral directions.

III. Applications

To illustrate the applications of the planar supercell method, we examine the effect of
interface roughness on transmission properties of double barrier structures, and effects of
neutrl impurities and geometric imperfections in quantum wire electron waveguides.

Interface Roughness
Figure 2 shows transmission spectra near the n = 1 resonance for a set of GaAs/AlAs
double barriers structures with interface roughness as depicted in Figure 1. For each
GaAs-AlAs interface on the incident side, a 50% random coverage rough interfacial layer
is placed between the pure GaAs layers and the pure AlAs layers. Random configurations
of interfacial layers with different island sizes are generated with a simulated annealing
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algotithm.[3] Three of the structures have average island sizes (A) of 28 A, 49 A, and 106
A; an additional reference structure with smooth virtual crystal approximation (VCA)
Alo.5Ga0.5As alloy interfacial layers is included for comparison. We note that the spectra
for structures with rough interfaces show a series of satellite peaks not present in the
reference structure spectrum. The satellite peak strength increases with island size, but
peak positions are approximately the same for all three rough structures. The satellite
peaks are the result of interface roughness induced k1l scattering of off-resonance states
into on-resonance states. In principle, interface roughness can scatter a given k1l into a
continuous range of k'11. But due to the finite supercell size, k1l can scatter only into a
discrete set of N. x N. parallel k vectors differing from it by a reciprocal lattice vector.
Therefore the contributions from the scattered states appear as individual satellite peaks.
The spacing between satellite peaks can be decreased with larger supercell sizes. For
sufficiently large supercells, the spacings would become smaller than the resonance peak
width, and the satellite peaks would then coalesce.

GaAs/AIAs DBH w/ Rough Interfaces GaAs/AIAs DBH w/ Rough Interfaces
L,*.12L,dW44 2516 ssl A-I.dd,-1m O d-0.LP-12L,er.42515"1Co.-d,,-,Amd,.02210 . . . -. . . -. . . . . . . 1.0 i t:

-VCA VCA

Aa Lf wn X011.21U1 it
Am".V 1m ----- ),a11.4 mn

10- fi

fit I
1 (1.1)0)j(.) (0.1) 1(2.0) 10.41

02 l".

0.10 0.15 0.20 025 0.0 0.35 0.16 0.17 0.18 0.19 0.20 021
E (*V) E (eV)

Fig. 2. Transmission coefficients for a set Fig. 3. Transmission coefficients for structures
of GaAs/AlAs double barrier structures with similar to those shown in Fig. 2, except that
rough interfaces as depicted in Fig. 1. the island sizes are larger.

The scattering mechanism described above accounts for how interface roughness can re-
duce peak-to-valley ratios in current-voltage characteristics of double barrier resonant
tunneling diodes by increasing off-resonance transmission coefficients. The other major
effect of interface roughness is the broadening of resonance peaks through wave function
localization. In Figure 3 we show transmission spectra for a set of structures similar to
those in the previous example, but with larger island sizes of 112 A, 304 A, and 424 A.
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We note that the n = I transmission resonance down-shifts and broadens with increasing
island size. This can be explained in terms of wave function localization. The presence of

the rough interfacial layer between the quantum well and the second barrier introduces
well width fluctuation, and in effect divides the structure into wide-well (Lw = 13, in
this example) and narrow-well (Lw = 12) regions. If the island sizes are sufficiently large
(compared to the de Broglie wavelength), it is possible to have quantum well states whose
wave functions are laterally localized in the wide-well regions. Since the wide-well regions
are also the narrow-barrier regions (second barrier width of L, = 4 rather than 5), the
transmission resonance associated with these localized states should be down-shifted (due
to the wider well), and broadened (due to the narrower barrier).

GaAs/AlAs Electron Waveguide GaAs/AiAs Electron Waveguide
L,2-=M Cn 3dcL.-4xMtwn? lz6lS SCl do &a3 L,2=M X'Sda-.4..S.n 17x176s-00 d.O.Iimv

1.0 -0.6

-•NmmU ---- m~~mn--- •€le Enm .... pmily , m

....---- -hoyp csier

OA---- CeEndu 0.5

0.5.4

I I'

00. 0 010.6 ~i 0.1

1 .0043 0.5 04 .5Ao03 .004

Ew ("v nEqloy (Ov}
Fig. 4. Transmission coefficients for a set of Fig. 5. Transmission coefficients a set of quart-
quantum wire electron wavegaide with differ- turn wire electron waveguide with and without
ent waveguide opening geometries. neutral impurity.

Electron W~aveguide
We explore the transmission properties of quantum wire electron waveguides with the
planar superscell method. Using discretization sizes of d4 = dy --. d, = 5A and 16 x 16
planar supercells, we modeled a GaAs quantum wire structure 200.A in length, 40A x 40A
in cross section, surrounded on the sides by AIAs walls, and the ends by GaAs electrodes.
To study the sensitivity of transport properties to waveguide opening geometry, we have
modeled two similar structures. The first has slightly wider waveguide openings : at the
two ends of the waveguide, the cross section is widened to 60A£ x 60A• for the first 5A
(lengthwise), and 50A x 50A for the next 5 Ar; the rest of the wire remains 40At x 40A in
cross section. The other structure is obtained by simply capping the ends of the original
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structure with 15 A thick AlAs layers. Figure 4 shows the transmission spectra for the
three structures described above. We see that the amplitude of the transmission coeffi-
cients and the resonance positions and widths vary considerably in these structures.

In the final example we study the effect of neutral impurities on transport properties
of electron waveguides. We model three waveguide structures : one with no impurities,
another with an attractive impurity at the center of the waveguide, and a third with
an impurity near the waveguide opening. Figure 5 provides a picture of how an impu-
rity perturbs the waveguide transmission spectrum. We note that an impurity near the
waveguide opening does not strongly perturb the lowest two resonances since these modes
have small probability densities near the waveguide opening. However, an impurity at the
waveguide center down-shifts and narrows the lowest (n=l) resonance while leaving the
n=2 mode relatively unperturbed. (Note that the n=3 mode has also been down-shifted
to near the n=2 resonance.) This is because the n=1 resonance has the largest probability
density at the center of the waveguide, while the n=2 mode has a node at the center.

IV. Summary

We discussed the planar supercell method as a means for treating 3D quantum transport in
mesoscopic tunnel structures. We demonstrated its applications with studies of interface
roughness in double barrier heterostructures, and geometric imperfecti w, in electron
waveguides. In addition to the examples discussed here, we have also use our method
to study the effect of alloy disorder and impurity scattering in various device geometries.
We found the flexibility of the method to be extremely useful in exploring a wide range
of issues relevant to the operation of tunnel devices.
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Simulation of coherent quantum transport in a magnetic field:

recovery of conductance quantization

Manhua Leng and Craig S. Lent
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Abstract

We extend the Quantum Transmitting Boundary Method (QTBM), a numerical algorithm
for solving the two-dimensional Schr6dinger equation for scattering states, to include an ap-
plied magnetic field to 2D systems. We apply this technique to simulate the magneto-transport
of a periodically corrugated electron channel. The conductance quantization of such structure
is recovered when the channel is long. The index of this quantization is a non-monotonic
function of energy.

I. Introduction

For structures of ultra-submicron dimension, electron transport is in the quantum regime. The
shapes of these devices and the potential larscapes can be flexibly tailored, for example,
by electro-static gating on top of the 2DEGs. Understanding the details of transport in these
structures inevitably involves numerical solutions of the 2D Schrldinger equation.

Figure I schematically shows the type of structures we consider: the region of interest can
be partitioned into several input and output lead regions (f0j, f, .... ) and a "device region"
(flo), where scattering states are to be solved. A perpendicular magnetic field is present.
For device modeling, a mode matching approach is widely adopted [ 1,2]. The problem with
this method is that, though useful for the most simple structures, it is difficult to apply for
arbitrary potential profiles. A general numerical algorithm, the Quantum Transmitting Bound-

Si FIGURE 1. The problem geoun-
SB etry. r" Is the boundary between

the device region C4g and lead L
r,.~ re denotes all the osher bound.

t x aries, where the wavefunctions
ur. vanish. The applied magnetic
I i field B is perpendicular to the

2D system.
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ary Method (QTBM) developed by Lent and Kirkner [3), allows more complicated potential
profile and can cope with complicated devices. It has proven to be an efficient technique in
device modeling in [4).

II. Model And Method

We extend the QTBM to include the effects of applied magnetic fields. With the choice
of the vector potential in Landau gauge, A = -Byi, the single-band 2D effective-mass
SchrOdinger equation becomes,

{A"2 V + Vo2(,y) 'P(z,y) = E1P(x,y). (1)

In the QTBM algorithm, we expand the scattering state in a lead region as a superposition
of the local transverse modes, including both traveling and evanescent ones. The modes in
the lead regions are obtained by solving (Eq. 1) as a quadratic eigenvalue problem for k at
given energy E, using the form %P(z,y) = e ks y(y). Part of the difficulty of the problem at
non-zero field is that the transverse mode eigenfunction, the X(y)'s, are not orthogonal, in
contrast to the zero field case. Except for the incident modes, the complex amplitude of each
mode is an unknown for which we must solve. In the Finite Element Method scheme, we
are able to properly implement the boundary conditions and obtain the numerical solutions of
full wavefunctions in the whole device by the solution of a single linear problem. We calcu-
late other interested physical quantities of transport, for instance, current density distribution
and transmission coefficients directly from the wavefunction. The extended QTBM technique
gives us the capability of solving the magneto-transport problem for arbitrarily shaped devices
with arbitrary potentials, as that of Figure 1.

III. Application and Results

As an important example, we present the results of this technique applied to a corrugated
quantum channel (Figure 2) which illustrates the recovery of conductance quantization for
long periodically modulated channels. The conducting width is periodically modulated be-

FIGURE L. A pcriodlclly modubted chanmel. The con-
ducting width alternate between d and d-h. A ukit cedl
k marked with dedw Dime and ustrted. A magnetic
bid k applekd in +z4hir'ctlon. aa 01
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FIGURE 3. Numerical results for the structure in Figure 2 at dlaff2.0, hla=O.6, wla=O.4 and 13.=243.
(a) Transmission coefficient for a channel of N=50 unit cells. The incident wave is in theflrst travel-
ing mode; (b) the incident is in the second mode; (c) the incident is in the third mode. (d) The Lan-
dauer Conductance, showing the quantization in a non-monotonic way as the function of energy.
(e) The bandstructure of an infinite modulated channel. The index of the conductance plateau in
(d) has an one-to-one correspondence to the number of positive-velocity states at a given energy in
the band diagram.

tween d and d-h with a periodicity of a and N periods. The full solution of wavefunctions and
scattering matrix is obtained for one unit cell (one corrugation) and the scattering matrix for
the structure of N unit cells (periods) is calculated using a cascading method. The Landauer
two-terminal conductance is then calculated straightforwardly.

Plotted in Figure 3 are the numerical results of transmission and conductance as a function
of energy at a modestly high magnetic field. The energy is expressed in units of first bulk
Landau level, EL = (hw,)/2, where w, = (eB)/m" is the cyclotron frequency; the magnetic
field is expressed in dimensionless form by /3 = (da)/1l , where 12 = h/(eB) is the magnetic
length. For the results presented here, the dimensions of the device are set as d/a = 2.0,
h/a = 0.6, w/a = 0.4. The effective mass is chosen to be m */m = 0.067, which is
appropriate for GaAs. Hard wall potentials outside the channel and zero inside are chosen
for simplicity.
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FIGURE 4. Particle current density distribution of the scattering states in the device region of a sin-
gle unit-cell channel at EIEL-3.15. Highlighted is the potential barrier "finger" which causes the
mixing of edge channels in the device. (a) The input is in the first transverse mode; (b) the input is
in the second transverse mode.

Drawn in Figure 3(a), (b) and (c) are the mode transmission coefficients, TI, T2, T3, when
the input is in the first, second, and third transverse mode respectively. The channel has 50
periods of modulation. We see a complicated pattern of mode transmission as a function of
energy and none of the single mode transmission coefficients is quantized.

In Figure 3(d) we plot the two-terminal Landauer conductance, G = k , Ti. It shows that
for the long channel of 50 periods, although none of the individual mode transmissions shows
the quantization, the total conductance as function of energy is essentially quantized. The
height of the plateaus is a non-monotonic function of energy.

In comparison, we also calculated the bandstructure of the infinite periodic system and plot it
in the reduced Brillouin zone(Figure 3(e)). We find the index of each conductance plateau has
a one-to-one correspondence to the number of positive-velocity (slope) bands in the band-
structure of the infinite problem [5). The shadings in Figure 3(d) and 3(e) illustrate this
correspondence. Full understanding of the variations in conductance from the exact integers
is for further study. One reason is that the channel, although long, is still finite.

For an incident energy of E/EL=3.15, marked with the dashed line in Figure 3(a), there
are two allowed traveling modes in the lead region. Figures 4 illustrates the particle current
density distributions of a one-cell channel. The modulation causes the mixing of edge states
in the device region and makes the single mode transmitting pattern complicated. Shown in
Figure 4(a) is the particle current density for electrons incident in the first mode (edge-state).
The opposite-going edge states on opposite side walls of the channel are weakly coupled
in one unit cell, so the resulting transmission coefficient is T1=0.96. Figure 4(b) shows the
current for electrons incident in the second mode. The transmission coefficient is T2=0.87
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for one unit cell. For the long channel of 50 unit cells, we have T, = 0.34 and T2 = 0.66
which sum to unity for the total transmission and make the plateau index of the quantized
conductance 1.

VI. Summary

We have extended the QTBM algorithm to include an applied magnetic field to 2D sys-
tems for solving current carrying states governed by effective 2D Schrtdinger equation. In
this algorithm, we have acquired the capability of modeling of magneto-transport with com-
plicated potential profiles and arbitrarily shaped devices. This technique is applied to studying
of a periodically corrugated quantum channel. The results illustrate that the total conductance
quantization recovers when the modulated channel is sufficiently long. The plateau index is
a non-monotonic function of energy. However, the individual mode transmissions are not
quantized.
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Numerical Method to Obtain the Two-Dimensional Electronic
States for Open Boundary Scattering Problems

Henry K. Harbury and Wolfgang Porod
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Notre Dame, IN 46556

Abstract

We discuss a numerical method for computing the electronic scattering states for a fully
two-dimensional open boundary scattering domain. The scattering states may then be
used to obtain the local electron density in the vicinity of the scatterers which is necessary
for a numerical study of the residual resistivity dipole and the "electron wind" force
relevant to electromigration. The scattering states may also be used to calculate the local
electron density of states which has recently been directly imaged by STM experiments on
the surface of copper. Our numerical method is based upon the partial wave expansion of
the known asymptotic form of the wave-function on the solution domain boundary. The
wave-function and the normal derivative are then matched on the boundary resulting in
a linear system of equations.

I. Introduction

The large volume of recent literature on the study of electromigration increasingly em-
phasizes the importance of the local non-uniform fields near scattering centers. It is clear
that a detailed understanding of the local fields near scatterers is needed to understand
phenomena in which the residual resistivity dipole (RRD) [1-21 and Friedel-oscillations
[3] play an important role. Such a local field treatment is used in the application of the
Kubo linear-response formalism to compute the "electron wind" force experienced by a
scatterer in electromigration [4-7].

The importance of local field effects near scattering centers is most clearly and elegantly
demonstrated by the recently published scanning tunnelling microscope (STM) experi-
ments performed on the Cu(111) surface by Crommie et al. [8-9]. In these experiments,
the local density of states (LDOS) of the two-dimensional electron gas (2DEG) on the
stepped surface of Cu( 111) was directly probed by and STM tip at low temperature. The
images of the LDOS revealed standing-wave patterns due to electron scattering from step
edges and defects.

In this paper, a numerical method is presented in which the two-dimensional electronic
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scattering states are obtained by solving the effective mass Schr6dinger equation over a
2D domain with an open boundary. The method uses the parital wave expansion of the
known asymptotic solution and matches the wave-function and its normal derivative on
the boundary. The resulting system of linear equations can be solved by the finite element
method. These scattering states may then be used to compute the electron density and
the LDOS inside the scattering domain. A self-consistent treatment would require an
iterative solution of scattering states using a Hartree potential [10].

The physical model for the partial wave expansion is presented in section II. Section III
presents the finite element formulation of the problem. An example solution for a repulsive
scatterer is presented in section IV. In conclusion, we summarize our method in Section
V.

II. Model

We view electron transport in the spirit of Landauer's picture for the residual resistivity
dipole (RRD) [1-2] in which the incident carrier flux is identified as the fundamental
driving transport quantity in a "jellium" model with a background scattering time -
which gives rise to the bulk resistivity p0 = m*/ne2 r, where n is the electron density
and m" is the electron effective mass. As is schematically depicted in Fig. 1, the incident
electron flux is elastically scattered by the defect, schematically shown as the shaded spot,
and is partially transmitted and partially reflected. For the metallic "jellium" model, the
problem domain is assumed to be in the ballistic regime and scattering is assumed to
take place within the region close to the scatterer such that 2lrkFl > 1, where kF is the
wave vector for the electrons at the Fermi-energy, and 1 is the mean-free path given by
1 = hk~rl/m*. Outside the scattering region the domain is assumed to uniformly extend
to infinity.

FIGURE 1: A schematic diagram of the 2-D scattering domain with an elastic scatterer
at the center. The solution domain is represented by the hatched region.

Within this "jelliurn" model, the self-consistent electronic states can be explicitly obtained
by solving the single electron effective mass Schr~dinger equation,

-T-V. (meVO~r, 0)) + [VR + VH + Vsc]1,E(r, 0) = Et/,E(r, 0), (1)
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where VR(r) is the potential of the scatterer, VH is the self-consistent Hartree potential
which accounts for many-body Coulombic interactions, and Vsc is the electrostatic po-
tential associated with self-consistent screening. Exchange and correlation may also be
included within a local density approximation [11]. The z dependence has been dropped
by the assumption that only the first subband of the 2DEG is occupied, reducing the
problem to circular-polar corrdinates.

We assume an incident plane wave of the form exp(ik • r). The asymptotic solution of
this equation in the region where the scattering potential is negligible (the region outside
the domain) is given by

,i(r > Ro,O)- 2 im[aJ(kr) + b.mH,.(kr)Ieim, (2)
M= -00

where we have used the Jacobi-Anger expansion of the incident wave, and Jm is the
Bessel function of the first kind with a known incident amplitude a, and HO) is the
Hankel function for the outgoing scattered wave with the unknown amplitudes b,,,.

Similar to the development of the quantum transmitting boundary method for quasi-iD
transport [12], the 2-D transport boundary condition is developed from the orthogonality
of the angular modes over the interval 0 = (0, 2ir), which are used to expand the unknown
coefficients, b,,, on the boundary of the domain,

b1, e-2w l,/(r = Ro, O)dO a JH(kRo) (3)
27riinHm(kRo) -0 H$T( (k k)

Using this expansion for the b, coefficients, the normal derivative of the wave-function
on the boundary can be obtained,

= 00-o H()'(kRa) i}
=ak z- (J,(k1? - J.(kRo)~)kO) etm

Fr R. ~ko 1 fo2o)
=00 JJIIMn~ ~

+ oo H=(nV(kR,) 2Ir e-:me'(r = R0 ,O)dO, (4)

and
alk 0 : (12, em 0(r = Ro, O)dO) eime, (5)

17=-00

where the primes on the Bessel and Hankel functions indicate derivatives with respect to
kr. Equations (4) and (5) form the basis for the open 2-D scattering boundary conditions
which can be incorporated into the finite element method. It is important to note that
the orthogonality of the angular functions requires a circular domain boundary.

III. Numerical Method

The finite element method is used to solve the 2-D effective mass Schr6dinger equation
on the discretized domain schematically shown by the grided region in Fig. 1. The region
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outside the problem domain is assumed to extend to infinity as described in section 11.
The finite element method is used to linearize the Schr6dinger equation, resulting in the
weak variational form

ft (' BTZ-Bdl) u + aT [V(r) - E]NT. Ndfn) u =

h2 me. ,[Vr)

Jr n0daf, (6)

where 6i is the vector of nodal values for the arbitrary test function V5, u is the vector
of unknown nodal values for the wave function i,, N is the vector of global orthonormal
finite element shape functions, B is the matrix of spatial derivatives of the N vector of
shape functions, and fisa is the unit normal to the domain boundary, 9fQ. The result
for the derivative of the wave-function on the domain boundary developed in section II
is inserted above to determine the right hand side surface terms. The resulting linear
system of equations has the form

weeT(T + V + C)u = iTp, (7)

where

T = 2 BTIBT Bdfl

V = j[V(r)- EINT.Ndnl

C 4h •-o H=- ''(kRo) 2(r = Ro,O)e'smdO e2irme(r R=,O)dO
4mir - ( $2(k&) \o foHmk~ i o...)• ko

P= a !Lk& m J'((kRo))- =r Ro, O)e'.mdO.
a- ZT~~o )" f ,,kVmoR)7I2m"~~ H.~~)'J

The infinite sums may be truncated to include only the more relevant low angular mo-
mentum modes with minimal loss in accuracy. The resulting linear system may be solved
by standard LU-decomposition and back substitution using sparse matrix methods for
the efficient use of both memory and cpu resources.

IV. A Repulsive Scatterer

Our preliminary results, neglecting electron-electron scattering effects contained in V11

and VsC, are presented for the structure schematically shown in Fig. 1. The infinite re-
pulsive scatterer is centered in the solution domain. The mesh generated for this example
contains 10801 nodes connected by 21500 triangular elements. Both skyline storage and
bandwidth optimization techniques were employed for an efficient computational solu-
tion of the resulting unsymmetric linear system of equations. The real part of the wave
function is presented in Fig. 2. The radial and angular modes are clearly visible in the
scattered wave.
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FIGURE 2: The real part
of the scattered wave func-
tion for an incident plane
wave scatterd by a repulsive
central field. Both the in-
cident plane wave and the
radially scattered contribu-
tions are clearly visible. The
mesh consists of 10801 nodes
with 215M0 triangular ele-
ments.

V. Summary

We have presented a numerical method to solve the 2-D effective mass Schr6dinger equa-
tion for an open boundary scattering problem. The method uses partial wave expansion
to fully specify the normal derivative of the wave-function on the boundary. The finite
element method is used to discretize the Schr6dinger equation. The partial wave bound-
ary conditions are used to fully specify the problem which reduces to a linear system of
equations which can be solved for the scattering states. The scattering states may then be
used to compute the local density of states and the electron density inside the scattering
region.
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Abstract

We investigate the line shape of the transmission probability in quantum waveguides
with resonantly-coupled cavities. The lifetime of the quasi-bound states is extracted
from the asymmetrical transmission amplitude on the real-energy axis. The reso-
nance/antiresonance feature in the vicinity of each quasi-bound state is characterized
by a zero-pole pair in the complex-energy plane. We develop a generalization of the
familiar symmetrical Lorentzian line shape, and discuss it in terms of Fano resonances.

I. Introduction

A common computational problem in quantum transport is to find the lifetimes of quasi-
bound states from the transmission peaks. The underlying theory is that each quasi-
bound state leads to a pole of the propagator (and the transmission amplitude) in the
complex-energy plane. If this pole is sufficiently close to the real-energy axis, it will
result in a resonance maximum of the observed transmission coefficient. A well under-
stood problem is double-barrier resonant tunneling, where the lifetimes of the quantum
well states may be extracted from the width of Lorentzian-shaped transmission peaks. A
less understood problem is electronic transport in quantum waveguides with resonantly-
coupled cavities [1]. It is known for these structures that the resonator states lead to
resonance/antiresonance features [2, 3], but their detailed line shape has not been in-
vestigated so far. In this paper, we present a theory of the line shape for transmission
in resonantly-coupled quantum waveguide, and we provide a computational method to
extract the lifetimes of the corresponding quasi-bound states.

II. Poles and Zeros

For double-barrier resonant tunneling (DBRT), it is well known that the resonant trans-
mission phenomena are related to the quasi-bound states in the quantum well region.
Based on the Breit-Wigner formalism, a quasi-bound state at energy Ep and decay time
" = h/2r yields a simple pole in the transmission amplitude t(z) at the complex-energy
z = Ep- ir [41,

t(z) (1)
z -(Ep - iF)"
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If this pole is sufficiently close to the real-energy axis such that the effect of other poles
can be neglected, the transmission probability, T(E) = It(E)I', for a physical energy on
the real-energy axis, E, is given by,

p2

T(E) =r (2)

which gives rise to a transmission resonance with a Lorentzian shape. It is an easy
matter to extract the lifetime of the quantum well states from the width of the observed
transmission peak.

An example of the transmission amplitude for DBRT is presented in Figs. l(a) and
(c), where the double-barrier structure and the transmission channnel are schematically
shown in the inset of Fig. l(a). In this example, the barrier is 0.2 eV high and 3nm
thick, the separation of the barrier is 20 rim. We see the poles in the complex-energy
plane are clearly visible in the contour plot of the absolute value of t(z) in Fig. 1 (c). The
Lorentzian line shape of the transmission probability is shown in Fig. l(a).

-�im 1 Figure 1. Comparison of the

405 USg (b) structure of the transmission
amplitude in the complex en-

am ergy plane for double-barrier
resonant tunneling (poles)

eUjs and t-stubs (zero-pole pairs).
For DBRT, (a) shows the
transmission probability on
the real-energy axis, and (c)
gives a contour plot of the ab-

solute value of the transmis-
.. .. .sion amplitude in the com-

plex energy plane. For the
t-stub structure, the corre-
sponding plots are shown in

U #A .LI US 92 0 L2 @ IL75 I. (b) and (d), respectively.
Enow ist WaWm (eV) tam Panl uti hd Emwa (eV)

Recently, much work has been done on transmission in resonantly-coupled quantum
waveguide systems, and rich features of the transmission coefficient have been found
(resonance/antiresonance) [5]. We have shown that the transmission amplitude exhibits
zero-pole pairs in the complex-energy plane for this kind of the structure [6]. As a con-
squence, zero-pole pairs lead to asymmetrical transmission resonance/antiresonance fea-
tures on the real-energy axis. As an example, we show the behavior for a t-stub structure,
which is schematically shown in the inset of Fig. l(b). It consists of a main transmission
channel and a dangling wire of length L = 10 nm. Zero-pole pairs are clearly visible from
the contour plot of the absolute value of t(z) in Fig. 1(d).

IM. Line Shape

Based on the zero-pole pair nature of the resonances in quantum waveguide structures,
we make the following ansatz for the transmission amplitude in the vicinity of each quasi-
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bound state,

t(z) (z - Eo) (3)
z - (Ep - iF)

Here, Eo and (Ep-ir) are the positions of the transmission zero and the pole, respectively.
The lifetime of the quasi-bound state is given by r = h/(2f), as for the case of double-
barrier resonant tunneling. Again, the transmission probability on the real-energy axis
is given by T(E) = It(E)I2, and the proportionality constant in eqn. (3) is determined
by assuming peaks with unity transmission which are known to occur in symmetrical
waveguide systems (6]. A unity transmission peak at energy E1 provides two constraints
for T(E), namely T(E 1 ) = 1 and •--dT IE, = 0. It is an easy matter to show that,

=E [(E -)2 +21 r((EEEO) 2] (4)
S(Ep - T2[ (E- Ep) 2

The above expression gives the line shape of the transmission probability for resonantly-
coupled quantum waveguides in terms of three parameters, namely the energy of the
transmission zero, E4, the energy of the resonant state, Ep (the real part of the pole
energy), and the inverse lifetime of the state, I (the imaginary part of the pole energy).
Note that (4) produces an asymmetrical line with a resonance/antiresonance behavior.
Such asymmetrical line shapes have previously been noted in atomic and molecular physics
[7]. These so-called Fano resonances are know to occur when a bound state is coupled to
a continuum of states, thereby leading to resonance phenomena [8].

In his original paper [7], Fano, after somewhat lengthy derivations, found that the au-

toionization cross section could be parameterized by (q + e)2/(1 + 02), where f is a reduced
energy (it is defined as e = (E - ER,.)/F, where ER,, is the energy of the resonant state)
and q is treated as a parameter (it is a complicated expression involving matrix elements).
We note that this is the same line shape as our eqn. (4) by making the following substitu-
tions, e = (E - Ep)/£ and q = (Ep - Eo)/£. Comparing our approach to Fano's [7], we
note that e has a similar meaning where Ep, the real-part of the pole energy, corresponds
to Eju., the energy of the resonant state. For the parameter q, our approach yields a
simple expression which could not have been inferred from Ref. [7]. Apparently, Fano's
line shape corresponds to a zero-pole structure in the complex-energy plane, a fact which
has not been noted before.

Given a certain transmission curve, we now can fit each resonance/antiresonance feature
to obtain the lifetime of the corresponding quasi-bound state. Using the known energies
of the transmission zero, 4E, and transmission one, Ei, we can find,

EP = (Eo + E1 ) V/(-Eo 
- E )2 _ 4r2 ,

2 2

The choice of the sign in the above equation determines whether Ep > Eo or Ep < Eo.
With this, the only unknown parameter is 1 which may be used to obtain the best fit of
the theoretical line shape (4) to the given transmission curve. We seek the best fit in the
sense of the least mean square error.

330

"* * 9 3 9 9o



IV. Results

We now present several examples to fit /(j

the lineshapes of resonance and antires-
onance pairs. Figure 2 presents fits of
the resonance/antiresonace line shapes for
a family of so-called weakly coupled t- 1 2

stubs [6], which are schematically shown a $.U LS

in the insets. In Figs. 2(a), (b), and
(c), the resonant stubs are separated from

the main transmission channel by a tun- ,.
neling barrier of length t = 1.0 nm and j
height V0 = 0.5 eV, VO = 1.0 eV, and j
V0 = 2.0 eV, respectively. In each case, we 1 12 3 ,3

show 3 quasi-bound states which lead to 038 U2 0G.

zero-one features in the transmission prob- aO
ability, and which are labeled in the plots. (c
Figures 2(a), (0), and (-y), show the fitted
line shape for the resonance numbered 3 of -
cases (a), (b), and (c), respectively. The "
fit is shown by the dotted line, and the a/. . .3

curve to be fitted by the solid line. as 0.2 OAs U 9s 1.0 045 7 o09
sWp (eV) EMp 4ev)

Figure 2. Examples of fits using the line shape (4)
(a) - for the weakly-coupled t-stub structures shown in

the insets. The fits to the third resonant state of
- (a), (b), and (c) are given in (a), (0), and (y),

respectively. The fits are shown by the dotted line,
and the curve to be fitted by the solid line.

a H L 0. 13 0 , In figure 3, we present another example&1U 0.2 OA0.4 .6 Oj I.

-O which shows transmission for a t-stub in
(b) .(c) . addition to double-barrier resonant tunnel-

ing on the main transmission channel. A
schematic drawing of this waveguide struc-ture is displayed in the inset, and the two

IM53 0"S M.2 03 tunneling barriers have a thickness of 1 nrm,
e -height of 0.5 eV, and separation of 4 nm.

(d) (e) Figure 3(a) shows the transmission proba-

bility on the real-energy axis. Figures 3(b) -I. (e) display the fits according to our ansatz,
3 4 eqn. (3), for resonances I - 4, respectively.

U us " s 4.9 1A Again, the fit is shown by the dotted line,
toaur(,V) AWr(OV) and the curve to be fitted by the solid line.

Figure 3. Example of fits using the line shape It appears that the zero-pole character of
(4) for a t-stub with a double barrier structure
on the transmission channel shown in the inset to each quasi-bound state, leads to extremely
(a). The fits of resonances 1 - 4 are shown in (b) good fits of the transmission probability in
- (e), respectively, the vicinity of each resonance.
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In general, the locations of the poles and the zeros on the real-energy axis are not the
same, i.e. Ep * Eo. It is this fact that gives rise to the asymmetric line shape, eqn. (4).
Note that from eqn. (5), the position of the pole, Ep, is always between the positions of
the transmission zero and one, E0 and El. If the pole and the zero occur at the same real
energy, i.e. Ep = E0 , then eqn. (4) yields a symmetric line shape,

_ (E-Ep 2

T pE, = (E-Ep) 2+r 2  (6)

The above expression describes a Lorentzian-shaped reflection line.

In recent work [3], Price has pointed out that a resonant quasi-bound state can give rise
to either Lorentzian-shaped transmission or reflection peaks, and he terms these peaks
resonances of the first and the second kind, respectively. We see that the reflection peaks
in general will not have a Lorentzian shape, and that Price's resonances of the second
kind are recovered when EP = Eo.

In summary, we have investigated the detailed line shape of the transmission probability
in quantum waveguides with resonantly-coupled cavities. The resonance/antiresonance
features in the vicinity of each quasi-bound states can be characterized by a zero-pole pair
in the complex-energy plane. We have found a generalization of the familiar symmetrical
Lorentzian resonance peaks. Using several examples, we have demonstrated the utility of
our line shape (4) to extract the lifetime of the quasi-bound state by a fit to the data.
We also discussed the asymmetrical line shapes in the context of Fano resonances.
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Abstract
Transport responses of hot electrons in quantum wires at high temperature are calculated
including both optical and acoustic phonon scatterings to study how the average electron
energy and the drift velocity depend on the applied electric field. The average electron
energy is found to increase monotonically with the applied electric field showing no anoma-
lous carrier cooling. The calculated results of drift velocity at lower electric fields agree
well with the results obtained by solving linearized Boltzmann transport equation. The
contribution of acoustic phonon scattering to the transport response is also discussed.

I Introduction

In recent years, mesoscopic structures, such as quantum wires and dots, have been de-
signed to investigate new phenomena and to explore high speed devices. In quantum
wires, momentum space is limited to a s~igle dimension, and the carrier density of states
(DOS) shows some singularities resulting in changes in the nature of particle collisions.
It is pointed out that at a moderate electric field anomalous carrier cooling of electrons
in quantum wires enharces the transport response due to the conversion of thermal en-
ergy into drift motion [1]. In the present work, we are interested in obtaining transport
responses of hot electrons in quantum wires at high temperature including both optical
and acoustic phonon scatterings to study how the average electron energy and the drift
velocity depend on the applied electric field. We adopt the Rees's iterative method [2]
to evaluate hot electron distribution function, since the method provides a consistent
treatment of the divergence of DOS of electrons and the scattering probability [3].

II Model

We employ a simple model for a quantum wire in which a two-dimensional electron gas
in xy-plane is confined by narrow gates or split gates, and electrons are free along only
the x direction. We assume that the wave function associated with quantized z motion
is expressed by the Fang-Howard variational function ( 0o(z) = (b3/2) 1 /2z exp(-½bz)) and
the confinement in the y direction is characterized by a parabolic potential of frequency
Q (V(y) = ½mf22y2). We consider only the ground subband, i.e. the strong confinement
case. Furthermore, number of electrons is assumed to be so small that their distribution
is given by the Boltzmann distribution function in thermal equilibrium.
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Ii

III Method

We evaluate the electron distribution function by using the iterative method proposed
by Rees [2] accounting the Fermi's golden rule to calculate the scattering probability. In
this study, we consider bulk longitudinal optical phonon scattering and acoustic deforma-
tion potential scattering, while other scattering processes are ignored for simplicity. The
distribution function f(k) is calculated by the iterative process as follows:

f.+ 1(k) -r fo0g,(k - eEt)e-rt dt, (1)

gS(V) E f.(k)s(, k') (2)

k r

where S(k, kW) is the scattering probability per unit time from k to k' and r is the total
scattering rate including self-scattering process which is positive constant and determines
the convergence of the iteration. S(k, k'), which includes self-scattering process, is evalu-
ated from real scattering probability W(k, k') as follows:

S(k, k') = W(k, k') + S(k)Sk,k' (3)

with S(k) being the self-scattering rate. W(k, k') is given by the sum of optical and

acoustic phonon scattering probabilities:

W(k, k') 4=rawo 47 ýo( ) (No + 1 + ,7) G(k' - k) J(k, + 17Wo-k)

+ 8ir/3w0o () (k) fy f-- (ek4--ek) (4)

T =300K
Q = 50meV

-1013 b-'= 40A

•C= 012
(U

1011

1 10 100

energy (meV)
Figure 1: Total scattering rates in a GaAs quantum wire (solid line).
Ilb = 40 A, D1 = 50 meV and T = 300 K. Dashed line: rates for optical
phonon scattering. Dotted line : rates for acoustic phonon scattering.
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T = 300K
Q =50moV
b-'= 4oA

CA)

OV/cm
200 V/cm
500 V/cm

k0 k>0

2 1 0 1 2
£ / (o

Figure 2: Distribution functions f(k) as a function of electron energy
el = k2/2m with applied electric fields (0, 200 and 500 V/cm) switched
on for 100 ps. 1/b = 40,A, 0 = 50meV and T = 300 K. Solid lines
represent f(k) including both optical and acoustic phonon scatterings,
and dotted lines are f(k) without acoustic phonon scattering.

with

G(q.) - dq, y-e Fu/)(Q), F(Q) = Jf G(Z.)I2 Ifo(z2 )I e- 1z2dzjdZ 2 , (5)

where a is the Fr6hlich coupling constant, w0 is the optical phonon energy, No is the occu-
pation number of optical phonons, 6 = D2mko/2pS2, D is the deformation potential, p is
the density of the material, s is the sound velocity, fv = (K/ko)/(2v/'r), f = (3/16)(b/ko),
K = (2mrf)1/2 , ko - (2mro)'/ 2 and Q = (q., + q,)'/ 2. Note that non-elastic effects of
acoustic phorion scattering are ignored in the present calculation.

Calculated scattering rates of a GaAs quantum wire are shown in Fig. 1. Scattering
rates by acoustic phonons are larger than those of optical phonons for low energy electrons
because of the singularity of DOS at the bottom of subband.

IV Results

Figure 2 shows calculated results of distribution functions with applied electric fields (0,
200 and 500 V/cm) switched on for 100 ps. In the case of zero applied electric field, the
distribution function coincides with the Boltzmann distribution function. This clearly
indicates that the iterative method is valid for evaluating transport responses of one-
dimensional electron gases.

In Fig. 3 we show the calculated average electron energy e., in a quantum wire of
GaAs as a function of applied electric field E. We find that e.,, increases monotonically
with E and an anomalous carrier cooling does not occur. The calculated result of drift
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T =300K
Q = 50meV
b-'= 40A

0 a.

S10- op+ac

00 , I . I , I , 1

0 N200 400

electric field (V/cm)
Figure 3: Average electron energy c., in a GaAs quantum wire as
a function of applied electric fields. Thermal kinetic energy (!kT) is
represented by dotted line. 1/b = 40A, 1? = 50meV and T = 300K.
Solid circles indicate e., including both optical and acoustic phonon
scatterings, and open circles are e,• without acoustic phonon scattering.

20 T =300K
Q = 50meV ,"-

E b-'= 40A A

10

10 2 , 400
-e 0

-B op-Iac

I • i . I I , I , I

0 200 400

electric field (V/cm)
Figure 4: Electron drift velocity in a GaAs quantum wire as a function of
applied electric fields (solid circles), compared with the results obtained
by solving linearized Boltzmann transport equation (dotted line). Both
optical and acoustic phonon scatterings are considered. 1/b = 40 A,
9 = 50meV and T = 300K.
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velocity is also shown in Fig. 4. The drift velocity at lower electric fields agrees well
with the results obtained by solving linearized Boltzmann transport equation At higher
electric fields, the drift velocity saturates as the electron temperature increases. Although
electron energy and drift velocity are influenced only a little by acoustic phonon scattering
in the case of 1/b = 40 A and D2 = 50 meV, it is not too small to be neglected.

Figure 5 shows a contribution of acoustic phonon scattering to the drift velocity. The
contribution, i7.c, is defined as follows:

c = I (6)
Vop

where vp+,.c is the drift velocity calculated by including both optical and acoustic phonon

0.4 -" ,

0.3 . Q=70meV

0=5OmeV a
a

0.1
T =300K
b-'= 40A

20 4010
electric field (V/cm)

Figure 5: Contribution of acoustic phonon scattering to the drift veloc-
ity for 12 = 50 and 70 meV. The contribution, %c, is defined in the text.
1/b=40A and T= 300K.

scatterings, and v0p is that without acoustic phonon scattering. The contribution of
acoustic phonon scattering becomes larger in the case of low applied electric field E or
strong confinement 2.
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